Appendix C:

Railroad Safety Trail Project Initial Study
TABLE OF CONTENTS

Introduction
Legal Authority...1
Impact Analysis and Significance Classification..1

Initial Study
A. Project Title..2
B. Lead Agency and Contact Person..2
C. Project Applicant..2
D. Project Site Characteristics..2
E. Description of the Project ..5
F. Trail Development Opportunities and Constraints Along the Project Corridor........................18
G. Public Agencies Whose Approval May Be Required For Subsequent Actions....................20

H. Environmental Factors Affected and Determination...21

I. Determination..21

J. Evaluation of Environmental Impacts
 Aesthetics...22
 Agricultural Resources...22
 Air Quality...23
 Biological Resources...23
 Cultural Resources...25
 Geology and Soils..28
 Hazards and Hazardous Materials..29
 Hydrology and Water Quality...30
 Land Use and Planning..32
 Mineral Resources..32
 Noise...33
 Population and Housing...33
 Public Services..34
 Recreation..34
 Transportation/Traffic..35
 Utilities and Service Systems...37
 Mandatory Findings of Significance...38

References...38
Summary of Mitigation Measures...39

List of Figures
Figure 1 Project Location Map...3
Figure 2 Preliminary alignment Overview Map..4
Figure 3 Preliminary Alignment Plans, Segment 1..8
Figure 4 Preliminary Alignment Plans, Segment 2..9
Figure 5 Preliminary Alignment Plans, Segment 3...10
Figure 6 Preliminary Alignment Plans, Segment 4...11
Figure 7 Preliminary Alignment Plans, Segment 5...12
Figure 8 Preliminary Alignment Plans, Segment 6...13
Figure 9 Preliminary Alignment Plans, Segment 7...14
Figure 10 Preliminary Alignment Plans, Segment 8..15
Figure 11 Proposed Johnson Avenue Bridge Design...27
INTRODUCTION

LEGAL AUTHORITY

This Initial Study (IS) has been prepared in accordance with the CEQA Guidelines and relevant provisions of the California Environmental Quality Act (CEQA) of 1970, as amended.

Initial Study. Section 15063(c) of the CEQA Guidelines defines an Initial Study as the proper preliminary method of analyzing the potential environmental consequences of a project. The purposes of an Initial Study are:

(1) To provide the Lead Agency with the necessary information to decide whether to prepare an Environmental Impact Report (EIR) or a Mitigated Negative Declaration;

(2) To enable the Lead Agency to modify a project, mitigating adverse impacts, thus avoiding the need to prepare an EIR; and

(3) To provide sufficient technical analysis of the environmental effects of a project to permit a judgment based on the record as a whole, that the environmental effects of a project have been adequately mitigated.

IMPACT ANALYSIS AND SIGNIFICANCE CLASSIFICATION

The following sections of this IS provide discussions of the possible environmental effects of the proposed project for specific issue areas that have been identified on the CEQA Initial Study Checklist. For each issue area, potential effects are isolated.

A “significant effect” is defined by Section 15382 of the CEQA Guidelines as “a substantial, or potentially substantial, adverse change in any of the physical conditions within the area affected by a project, including land, air, water, minerals, flora, fauna, ambient noise, and objects of historic or aesthetic significance.” According to the CEQA Guidelines, “an economic or social change by itself shall not be considered a significant effect on the environment, but may be considered in determining whether the physical change is significant.”
INITIAL STUDY

A. PROJECT TITLE

Railroad Safety Trail Project

B. LEAD AGENCY and CONTACT PERSON

City of San Luis Obispo
Public Works Department
San Luis Obispo, CA 93401
Contact: Terry Sanville, Principal Transportation Planner (805) 781-7178

C. PROJECT APPLICANT

City of San Luis Obispo
Public Works Department
San Luis Obispo, CA 93401

D. EXISTING PROJECT SITE CHARACTERISTICS

Location and Surrounding Land Uses: The project study area discussed in this document is located within the City of San Luis Obispo. The Railroad Safety Trail alignment follows the existing railroad tracks between the Railroad Depot at the terminus of Santa Rosa Street to Foothill Boulevard. The trail is eventually planned to connect into the California Polytechnic State University (Cal Poly) bikeway system to the North, and the Railroad Recreation Trail, Phase II to the South. The trail transverses over approximately two miles, and is divided into two segments. Segment One is from the Railroad Depot to Marsh Street, and Segment Two goes from Marsh Street to Foothill Boulevard.

The topography of the study area is basically flat due to the fact that the trail is on a railroad right-of-way that has been graded to be relatively flat throughout. The surface along the railroad is currently covered with gravel, and on some of the bridges the old wooden planks have large gaps between them. The railroad corridor is surrounded by high-density residential, commercial, and office uses.
Figure 1. Project Location Map
Figure 2. Preliminary Alignment Overview Map
Existing General Plan Designation: General Plan land use designations vary along the railroad corridor, which typically traverses industrially-designated areas, but enters residential areas toward the downtown portion of the corridor.

Existing Zoning: Zoning varies along the affected segments of the corridor. Zoning surrounding the proposed bike trail consists of office, industrial, commercial, public facilities, and residential areas.

E. DESCRIPTION OF THE PROJECT

a. Introduction and Project Purpose. The proposed project is a bicycle trail, to be developed under the direction of the City of San Luis Obispo. The trail is intended to implement City General Plan Circulation Element goals calling for such a facility. The planning effort for the Railroad Safety Trail has been conducted within the framework of a public participation program, and designed to involve all those interested and effected by the proposed trail.

The proposed project was developed based on a combination of public input through workshops, consultant studies, and city general plan direction.

b. Project Background. Since 1975, the City of San Luis Obispo has been planning and installing bikeways. To date, the City has created over 25 miles of Class II bike lanes extending along both sides of most arterial streets. In general, a Class I trail is completely separated from any roadways, and a Class II trail shares the travel routes with automobiles. The City has begun to construct Class I bikeways that are separated from streets and traffic. A recent example of a Class I bikeway is the path that extends along the East side of the Union Pacific Railroad, north of Orcutt Road.

In 1993 the City adopted the Bicycle Transportation Plan (BTP) that calls for the completion of a rich network of bikeways that link all parts of our community and serves people using bicycles for everyday transportation and for recreation. The BTP identifies a network of off-street bike paths that adjoin selected creek corridors and the Union Pacific Railroad. These paths are intended to link neighborhoods with major destinations in San Luis Obispo and provide opportunities for recreational bicycling, walking, and roller-blading, free from conflicts with motor vehicles. The Railroad Safety Trail is one of several links in the system that is intended to implement the BTP.

c. Project Goals and Objectives. This section describes the goals and objectives associated with each portion of the proposed project.

The trail alignment has been placed in its proposed location because the railroad runs through the center of San Luis Obispo and touches many main arterial roads. Bicyclists, runners, and pedestrians currently heavily use the railroad corridor. The trail is proposed in order to create a safer environment along the tracks for people to use and should reduce conflicts with railroad operations.
The Railroad Safety Trail is intended to become the framework for phased implementation of a Class I bike trail, that will ultimately become a continuous bikeway that transverses from Cal Poly to the Edna-Islay Neighborhood and beyond. The plans, documents and estimates developed for this trail will guide the development of detained engineering designs, preparation of construction documents, the acquisition of property, and maintenance of the ultimate project.

Although the Union Pacific Railroad privately owns the study area and “No Trespassing” signs are posted, this segment of the railroad corridor is well traveled by pedestrians, joggers and bicyclists. There are several known access points leading to the railroad right-of-way, and many established trails that are worn into the soil. The rail corridor is being used because it provides a direct route through the city for many people, and it allows for travel without automobiles to contend with. It is the City’s intention to create a much safer pathway for both the trail users and the Union Pacific Railroad.

The railroad corridor is currently not safe to travel on. The surface is covered with large gravel that is highly unstable; it constantly moves under foot and has been known to pop bike tires. Many people choose to travel directly down the center of the tracks because it has crossties that are flat and easy to walk on, and a stuck shoelace could cause a major catastrophe. The existing railroad bridges are very narrow, and many of the boards are rotting and leaving large open spaces exposed. The Railroad Safety Trail will have a smooth multi-use trail that has separate bridges beside the railroad structures, and a trail with a fence that is located a safe distance away from the tracks.

There are currently only a few Class I trails and bike facilities within the city at this time. Bicyclists and pedestrians must share their travel routes with automobiles, and the lack of Class I bike and trail facilities raises concerns over public safety.

Access points from the trail to schools, neighborhoods, employment centers, and multi-modal stations would be provided to serve as an effective commuter corridor. Throughout the trail corridor, there would be amenities for recreational and commuter trail users. Benches and waste receptacles, drinking fountains and restrooms, and directional and warning signs are just a few of the items called for by the plan.

e. Preliminary Trail Alignment. The proposed trail would generally follow the existing Union Pacific Railroad corridor, roughly between the Foothill Boulevard and the existing AMTRAK station. The proposed trail alignment is shown on Figures 3-10.

At its southernmost point, the Class I trail begins at a primary staging area located at the northern end of the Railroad Depot parking lot. The trail continues north, within the current UPRR Right-of-Way, along the west side of the railroad tracks to Marsh Street crossing over Johnson Avenue and San Luis Obispo Creek. Connections to adjacent surface streets along this portion of the trail occur at Toro Street, Johnson Avenue, and Buchon, Pismo, Pacific, and Marsh Streets. At Marsh Street, an enhanced crossing signal system will facilitate controlled at-grade crossing to the north side of the Street.
From Marsh Street, the most promising trail alignment continues north within the current UPRR Right-of-Way, along the west side of the tracks to the northern terminus of Johnson Avenue just south of the existing Highway 101 railroad bridge, crossing over Monterey Street and under Mill Street. The trail crosses to the east side of the tracks via an at-grade or grade-separated crossing to continue north over the existing Highway 101 railroad bridge. Connections to adjacent surface streets along this portion of the trail occur at Higuera Street, Palm Street, and Johnson Avenue.

Once over Highway 101, the trail continues north following the easternmost edge of UPRR Right-of-Way with a portion of the trail on City-owned property adjacent the existing row of California Boulevard palm trees. Following the palm trees north, the trail then terminates at the intersection of Foothill and California Boulevards. Connections to adjacent surface streets along this portion of the trail occur at the intersections of California Boulevard and Hathway Street, and Foothill and California Boulevard.

f. Trail Design Standards. The Railroad Safety Trail would be designed to be attractive to both the regular commuter and casual bicyclist. As a Class I facility, the proposed trail would be constructed with a paved surface wide enough to accommodate multiple uses. The following lists describe typical trail construction materials and design standards.

- Where space allows, paved portion of trail will be 3.7 meters (12-feet) wide, 0.12 meter (4-inch) thick asphalt path constructed over 0.15 meter (6-inch) aggregate base.
- Where space is constrained between the depot and Toro Street maintenance road under the Mill Street Bridge and over the existing Highway 101 railroad bridge, approximately 0.4 kilometers (0.3 miles) of the 2.3 kilometers (1.4 miles) trail will have a paved section as narrow as 2.13 meters (7-feet), 0.12 meter (4-inch) thick asphalt path constructed over 0.15 meter (6-inch) aggregate base.
- 0.6 meter (2-foot) wide, 0.15 meter (6-inch) thick, aggregate base shoulders on each side of the paved trail.
- Caltrans minimum turn radii.
- Appropriately designed “knuckles” may be used to attain desired alignment.
- Trail access to roads aligned to create a right angle with the road.
- Removable bollards at all trail and road intersections to bar unauthorized vehicle entry.
- Fencing as necessary to direct or limit trail access.
- 0.12 meter (4-inch) wide painted yellow centerline to create two lanes of travel.
- 0.12 meter (4-inch) wide painted white edge lines delineating edge of pathway.
- Low landscaping at intersections and roadway entrances to maintain proper site distances.

Union Pacific Railroad sets as a minimum standard a clear distance of 2.6 meters (8.5 feet) from the edge of any proposed trail to the centerline of the existing railroad tracks. This clear distance will be referred to throughout this project description as the minimum setback. The typical setback used for the alignment of the Railroad Safety Trail described in this document is 3.6 meters (12 feet) or further from the existing railroad tracks centerline. In three locations along the trail, where it is not possible to maintain this typical setback due to physical constraints, the minimum 2.6 meters (8.5 feet) setback is used.
Railroad Safety Trail - Preliminary Alignment
Sheet 2
Railroad Safety Trail - Preliminary Alignment
Sheet 3
Option Two Requires New Bike and Pedestrian Bridge Over Highway 101

Option One Could Share Existing Railroad Bridge Over Highway 101 (See C Sheet 6)

Option Three Requires New Bike and Pedestrian Bridge Over Highway 101

Potential Dual Bike Trail and Union Pacific Access Road

Accessible Pedestrian Ramp (See A Sheet 6)

CROSSING OPTIONS (See A and B, Sheet 6)

Highway 101 Bridge Crossing

Security Fence (See A, Sheet 1)

Potential Bridge and Trail Over Railroad Connects Neighborhoods

Rand Rail Safety Trail - Preliminary Alignment
Sheet 6
VEHICULAR AND PEDESTRIAN TRAFFIC FLOW AND SIGNAL PHASING SHALL BE INVESTIGATED AS PART OF FUTURE CLASS I RAIL-WITH-TRAIL FACILITY AS SHOWN IN CAL POLY'S ADOPTED MASTER PLAN.

LANDSCAPE ENHANCEMENT AREA FROM FOOTHILL TO HIGHWAY 101

EXISTING EDGE OF PAVEMENT

EXISTING CULVERT

OPEN ACCESS FROM BIKE PATH TO ADJOINING RESIDENTIAL AREAS

SECURITY FENCE ON ALL OPTIONS (SEE A, SHEET 1)

RAIL FENCE (SEE A, SHEET 1)

RAIL FENCE (OPTION 3)

EXISTING PALMS TREES TO REMAIN

A Typical Trail to Railroad Track Relationship

B Bike Path along California Looking South-East

Railroad Safety Trail - Preliminary Alignment
Sheet 8
g. Signing and Marking. The directional and warning signs will be constructed of wood posts with metal panels, and placed along the trail and surrounding roadways where needed. A logo has been developed for the Railroad Safety Trail, and it will be incorporated into the directional signs to create unity and recognition within the trail system. The warning signs will consist of stop, yield, caution, and vehicular and pedestrian crossing signs. The signs will be constructed and installed according to Cal Trans standards.

Interpretive signs will educate the trail users about the railroad’s history, and the surrounding creek and it’s wildlife. These signs will be located at the Pepper Street Rest Area. They will be constructed of an aluminum frame with flat porcelain panels, and be approximately 3 feet high.

An Informational Kiosk will be located at the Pismo Public Park to educate the trail users and provide maps and information about the trail. The kiosk will be constructed of wood and have a shingled roof, and consist of four sides. They will have individual plexiglass panel doors that lock, but open with a key to insert updated information. The kiosk will be approximately 8 feet high.

h. Staging and Rest Areas. Staging areas and trailside rest areas will offer expanded recreational opportunities along the trail.

Depot Staging Area
At this major entry point to the bikeway, a larger rest area and pocket park were incorporated as a staging area. In addition to the amenities on the rest area list, the staging area contains:

- Drinking fountain
- Bike racks and lockers
- Picnic tables
- Public restrooms
- Telephones
- Informational kiosk
- Evening lighting
- Automobile parking areas

Pepper Street Trail Side Rest Area
At this major entry point to the bikeway, a larger rest area and pocket park were incorporated as a staging area. In addition to the amenities on the rest area list, the staging area contains:

- Benches
- Trash receptacles
- Interpretive signs
- Landscape fencing
- Native plantings

i. Trail Fencing. A fence would be located between the proposed path and the existing tracks along the entire length of the trail corridor. In Segment Two, the fencing is proposed on both sides of tracks along California Boulevard, located approximately from Highway 101 to
Foothill Boulevard. The design of double fencing at many locations is intended to funnel trail users to safe crossing areas, to address the established current usage patterns, typically by Cal Poly students.

Different fencing options have been developed based on how far away from the tracks the trail will be located. In areas where the trail can be located further than 25 feet from the centerline of the tracks, the fencing will be a rail fence that is 4 feet high with wood posts and 4 strands of wire for railings. In areas where the trail can be located between 12 to 25 feet from the centerline of the tracks, the fencing will be a security fence that is 6 feet high with metal posts and metal mesh panels. In areas where the trail can be located between 8.5 to 12 feet from the centerline of the tracks, the fencing will be a security fence that is 8 feet high with metal posts and welded metal panels. Where possible, the security fence will be planted with clinging vines in order to soften the effect of the fencing. The fencing for the proposed rest areas is 4 feet high, with split rail posts and rails. However, the fencing at the Pismo Public Park will be a rail fence that is 4 foot high with wood posts and 4 strands of wire for railings.

j. Trail Bridges. The bridges that would cross creeks are a clear-span bow truss design, sufficient to support a maintenance or emergency vehicle. They would be constructed with a weathering steel finish and asphalt floor. The bridges will have a 54” high bicycle railing and handrail, horizontal safety rails and toe plate.

An enclosed portal will be used to cross over roads and Highway 101. The portal is basically a box that is enclosed on the sides and top, and will have an attached security fence. It will be constructed with a weathering steel finish and asphalt floor. The bridge will have 54” high bicycle railing and handrail, horizontal safety rails and a toe plate.

k. Trail Lighting. The Railroad Safety Trail is not proposed to have continuous lighting. Where the trail crosses public roads at grade, supplemental security lighting would be incorporated into existing street lighting. Limited lighting may be incorporated into the proposed staging areas.

l. Other Trail Amenities. The trail offers a unique opportunity to develop historic and educational themes. Interpretive exhibits would be placed at strategic locations along the trail offering a variety of information, including the history of the rail corridor and its role in the development of the City of San Luis Obispo. Other themes could be rail trails in other cities and countries, the historical development of transportation and the use of the bicycle, air quality improvements through bicycle commuting, and the local creek habitats and wildlife.

m. Implementation and Phasing. The City intends to implement the Railroad Safety Trail over time through the construction of individual segments. The City further recognizes that the preferred trail alignment in segments 1 and 2 is entirely within the privately held Union Pacific Railroad right-of-way, with the exception of a City-owned strip along California Boulevard. Given these ownership issues, the following outlines the most likely process of implementing the trail over time.

Securing Approvals and ROW

• Work with UPRR to gain acceptance and buy-in for the trail alignment within their corridor.
• Submit an application for a new at-grade crossing to the PUC for consideration.

• Negotiate terms of right-of-way acquisition with UPRR for the entire RST route from the Rail depot to Foothill Boulevard.

• Encourage Cal Poly to plan for the trail alignment and acquire UPRR ROW between Foothill Boulevard and the Recreations Sports Complex north of Highland Drive.

Trail Construction

• Phase I should focus on Segment 1 of the RST between the Rail Depot and Marsh Street.

• Phase II should focus on the segment along California Boulevard between Taft Street and Foothill Boulevard.

• Phase III should focus on the segment between Marsh Street and Taft serving as a “gap closure” project.

• Cal Poly should immediately pursue extending the Trail north of Foothill Boulevard to connect with the Recreation Sports Complex.

• The City will pursue extending the Trail south from Orcutt Avenue adjacent to the Orcutt Area Specific Plan Area to the Edna-Islay Neighborhood.

F. TRAIL DEVELOPMENT OPPORTUNITIES AND CONSTRAINTS ALONG THE PROJECT CORRIDOR

This section describes the two proposed segments of the trail corridor, along with potential constraints and opportunities within each segment. This discussion will be referred to in the analysis contained in Section J. of this document, Evaluation of Environmental Impacts.

Segment 1 -San Luis Obispo Train Depot to Marsh Street
Characterization:
This segment of the trail corridor begins at the Trail Depot continuing north to Marsh Street and is primarily adjacent to residential neighborhoods. Access to the trail corridor is gained from both the east and west with an established and well-worn trail along the west side of the railroad tracks.

The majority of the segment’s eastern portion, outside the trail corridor, consists of rising and falling topography, while the western portion, outside the trail corridor, is generally level. The following lists briefly summarize opportunities and constraints identified through field visits and data review.

Summary of Opportunities:
- Historical railroad depot and water tower provide an opportunity for historical and educational themed interpretation and gateway setting.
Opportunity to develop a staging area at northern end of depot’s parking lot with ample space for visitors to park and ride. Architectural style and features could tie into Railroad District Plan and the depot itself.

Existing maintenance access from adjacent Toro Street to the west side of the tracks provides opportunity to reorganize alignment to allow dual use by cyclists and maintenance vehicles.

Existing bridge supports at Penny Lane and Fairview Street could support new bicycle/pedestrian only bridge to connect eastern neighborhood to downtown.

Unobstructed areas above the top-of-bank exist to install clear-span bicycle/pedestrian bridge over San Luis Obispo Creek, avoiding impacts to the creek corridor.

A small City-owned parcel at the corner of Pacific and Pepper Streets and adjacent the UPRR Right-of-Way offers an interesting opportunity to create a small rest stop and trail access point under existing large canopy shade trees.

Existing controlled intersection at railroad track and Marsh Street could be utilized with minor intersection modification to enhance trail crossing safety.

Ample setback distance from the railroad tracks centerline exists for trail placement for most of the segment’s length.

Access from downtown and existing bike travel lanes to west side of track is relatively unobstructed.

Summary of Constraints:

- Access from eastern neighborhood to trail corridor north of depot obstructed due to hilly terrain and disconnected street system.
- Corridor heading north from depot is narrow and immediately adjacent to a steep slope above private property. Retaining structure may be required to accommodate trail.
- Constrained rail corridor near Johnson Avenue requires placement of trail close to tracks.
- Existing railroad bridges at Johnson Avenue and San Luis Obispo Creek too narrow to accommodate additional trail. New bridges required to span roads and creek.
- Existing power poles and signal wire facilities obstruct trail corridor near Johnson Street.
- East side of the tracks constrained in some areas making trail placement difficult.

Segment 2 - Marsh Street to Foothill Boulevard

Characterization:
This segment of the trail corridor begins at Marsh Street and continues north to Foothill Boulevard through residential neighborhoods. Cal Poly anchors the corridor’s northern terminus.

Access to the trail corridor between Marsh Street and Highway 101 is gained primarily from the west with an established and well-worn trail along the west side of the railroad tracks. Between the Highway 101 bridge and Foothill Boulevard, access to the corridor is gained almost equally from both the east and west sides of the railroad tracks. Students walking or riding into Cal Poly’s campus from adjacent neighborhoods primarily use the established trails along this portion of the corridor.

The segment’s eastern edge between Marsh Street and Highway 101, outside the trail corridor, consists of rising and falling topography, while the western edge, outside the trail corridor, is generally level and perched slightly below the railroad corridor's average elevation. The segment’s eastern and western edges between Highway 101 and Foothill Boulevard, outside the...
trail corridor, are comprised of gently sloping to level terrain. The following lists briefly summarize opportunities and constraints identified through field visits and data review.

Summary of Opportunities:
- Wide railroad track bed throughout majority of corridor provides opportunity to maintain recommended trail setback distances from tracks.
- Tracks passing under the Mill Street Bridge are offset to the east allowing for trail placement to the west of the tracks. Potential for dual use by UPRR maintenance vehicles.
- Existing bridge supports at Phillips Lane could support new bicycle / pedestrian only bridge to connect eastern neighborhood to downtown.
- Lack of a safe east / west railroad crossing for UPRR maintenance vehicles at the southern end of the Highway 101 bridge and regular observed cyclists and pedestrians crossings at this point, provide a unique opportunity to create either an at-grade or grade-separated crossing for cyclists and UPRR maintenance vehicles only. The crossing could take advantage of the existing maintenance access road at the northern terminus of Johnson Avenue.
- Tracks across the existing Highway 101 bridge are offset to the west providing an opportunity to cross over Highway 101 utilizing the existing bridge.
- Existing established palm trees along California Boulevard provide a mature landscape framework for trail improvements through this section of the Railroad Safety Trail.
- City right-of-way along California Boulevard adjacent UPRR Right-of-Way provides an excellent opportunity for trail placement within the rail corridor while avoiding property acquisition issues with UPRR.
- Opportunity to organize traffic flow from corridor, across California Boulevard to Hathway, through controlled trail access points along California Boulevard.

Summary of Constraints:
- Marsh Street at the UPRR corridor is currently an unsignalized crossing with a high traffic volume. A big constraint along the trail is Marsh and Pepper Street intersection, a busy area that currently has no traffic signals.
- Northern and southern approaches to the existing Monterey Street bridge adjacent to the tracks are too narrow to accommodate a bike trail.
- The Monterey Street bridge is only wide enough to accommodate the width of a train. New bridge required to span street.
- Billboards adjacent the west side of the Monterey Street bridge may have to be purchased and removed to provide clearance required for any new bridge structures.
- Rail corridor passing under Mill Street bridge is extremely narrow requiring modification to standard trail width and clearances.
- New at-grade or grade-separated crossing at northern terminus of Johnson Avenue requires review and approval by Public Utilities Commission and UPRR.
- Existing grade variations at the northern terminus of Johnson Avenue and Highway 101 bridge require extensive earthwork to construct an at-grade or grade-separated crossing.
- Existing Highway 101 bridge may be unavailable for trail replacement requiring a new and separate bicycle / pedestrian bridge over the highway. Vehicles travel at relatively high speeds along California increasing making crossing from the rail corridor to the east side of California difficult.
G. PUBLIC AGENCIES WHOSE APPROVAL MAY BE REQUIRED FOR
SUBSEQUENT ACTIONS (e.g. permits, financing approval, or participation
agreement):

- California Department of Fish and Game (CDFG)
- US Fish and Wildlife Service (USFWS)
- US Army Corps of Engineers (Corps)
H. ENVIRONMENTAL FACTORS AFFECTED

The environmental factors checked below would be potentially affected by this project, involving at least one impact that is a potentially significant unless mitigated as indicated by the checklist on the following pages.

☐ Aesthetics	☑ Agriculture Resources	☐ Air Quality
☐ Biological Resources	☑ Cultural Resources	☐ Geology / Soils
☑ Hazards & Hazardous Materials	☑ Hydrology / Water Quality	☐ Land Use / Planning
☐ Mineral Resources	☐ Noise	☐ Population / Housing
☐ Public Services	☐ Recreation	☑ Transportation / Traffic
☐ Utilities / Service Systems		

I. DETERMINATION

On the basis of this initial evaluation:

☐ I find that the proposed project COULD NOT have a significant effect on the environment, and a NEGATIVE DECLARATION will be prepared.

☑ I find that although the proposed project could have a significant effect on the environment, there will not be a significant effect in this case because revisions in the project have been made by or agreed to by the applicant. A MITIGATED NEGATIVE DECLARATION will be prepared.

☐ I find that the proposed project MAY have a significant effect on the environment, and an ENVIRONMENTAL IMPACT REPORT is required.

☐ I find that the proposed project MAY have a "potentially significant impact" or "potentially significant unless mitigated" on the environment, but at least one effect 1) has been adequately analyzed in an earlier document pursuant to applicable legal standards, and 2) has been addressed by mitigation measures based on the earlier analysis as described on attached sheets. An ENVIRONMENTAL IMPACT REPORT is required, but it must analyze only the effects that remain to be addressed.

☐ I find that although the proposed project could have a significant effect on the environment, because all potentially significant effects (a) have been analyzed adequately in an earlier EIR pursuant to applicable standards, and (b) have been avoided or mitigated pursuant to that earlier EIR, including revisions or mitigation measures that are imposed upon the proposed project, nothing further is required.

Terry Sanville
City of San Luis Obispo

Date
J. EVALUATION OF ENVIRONMENTAL IMPACTS

I. AESTHETICS - Would the project:

<table>
<thead>
<tr>
<th>ISSUES</th>
<th>Potentially Significant Impact</th>
<th>Less Than Significant With Mitigation Incorporation</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Have a substantial adverse effect on a scenic vista?</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>b) Damage scenic resources, including, but not limited to, trees, rock outcroppings, and historic buildings within a state scenic highway?</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>c) Substantially degrade the existing visual character or quality of the site and its surroundings?</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>d) Create a new source of substantial light or glare, which would adversely affect day or nighttime views in the area?</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

a, b, c. The Railroad Safety Trail would be generally within the existing right-of-way of the Union Pacific Railroad. It would not be adjacent to creeks or other natural features, nor would it affect these natural features in its development (see Section IV, Biological Resources, for a discussion of impacts associated with creek crossings.) The project would not remove trees, disturb natural features such as rock outcroppings, or displace existing structures. No development would occur within sensitive riparian areas. The project would not degrade the visual character of the rail corridor or its surroundings, which is a mixture of urban development. Based on the proposed trail design and amenities incorporated into the project, impacts would be less than significant.

d. In general, the trail corridor will not be lighted. However, pedestrian-scale lighting will be included at key intersections and staging areas along the trail. Staging areas within the urbanized railroad corridor would not create significant visual impacts, primarily because such areas (such as the rail depot) are already well lit and contain substantive urban features.

II. AGRICULTURE RESOURCES - Would the project:

<table>
<thead>
<tr>
<th>ISSUES</th>
<th>Potentially Significant Impact</th>
<th>Less Than Significant With Mitigation Incorporation</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Convert Prime Farmland, Unique Farmland, or Farmland of Statewide Importance (Farmland) to nonagricultural use?</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>b) Conflict with existing zoning for agricultural use, or a Williamson Act contract?</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>c) Involve other changes in the existing environment which, due to their location or nature, could individually or cumulatively result in loss of Farmland, to non-agricultural use?</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

a. The proposed trail would traverse urban areas and be located within a rail corridor. Agricultural resources would not be affected.

b. No parcel within the project corridor is currently under Williamson Act contract. All locations along the corridor are designated for urban use. Impacts would be less than significant.

c. The entire project corridor is designated for urban use, and is generally developed as such. Implementation of the trail would not convert designated agricultural lands.
III. AIR QUALITY

- **a)** Conflict with or obstruct implementation of the applicable Air Quality Attainment Plan or Congestion Management Plan?
 - X

- **b)** Violate any stationary source air quality standard or contribute to an existing or projected air quality violation?
 - X

- **c)** Result in a net increase of any criteria pollutant for which the project region is non-attainment under an applicable federal or state ambient air quality standard (including releasing emissions which exceed quantitative thresholds for ozone precursors)?
 - X

- **d)** Create or contribute to a non-stationary source "hot spot" (primarily carbon monoxide)?
 - X

- **e)** Expose sensitive receptors to substantial pollutant concentrations?
 - X

- **f)** Create objectionable odors affecting a substantial number of people?
 - X

The proposed project is intended to expand opportunities for non-motorized transportation, both for recreation and commuting purposes. As such, it is consistent with San Luis Obispo County’s Air Quality Management Plan (AQMP). As such, the project would be beneficial to regional air quality in the long-term, because it would divert a small percentage of commuter trips toward the use of non-motorized transportation modes. Project construction may cause minor air quality impacts associated with vehicles and construction equipment, as well as fugitive dust that may become airborne. However, if equipment were operated in accordance with manufacturers’ specifications and San Luis Obispo County APCD guidelines, short-term impacts would be less than significant. Since trail users would use non-motorized forms of transportation, the project would not create or contribute to a non-stationary source "hot spot", expose sensitive receptors to substantial pollutant concentrations, or produce any objectionable odors.

IV. BIOLOGICAL RESOURCES

- **a)** Adversely impact, either directly or through habitat modifications, any endangered, rare, or threatened species, as listed in Title 14 of the California Code of Regulations (§670.2 or 670.5) or in Title 50, Code of Federal Regulations (§17.11 or 17.12)?
 - X

- **b)** Have a substantial adverse impact, either directly or through habitat modifications, on any species identified as a candidate, sensitive, or special status species in local or regional plans, policies, or regulations, or by the California Department of Fish and Game or U.S. Fish and Wildlife Service?
 - X

- **c)** Have a substantial adverse impact on any riparian habitat or other sensitive natural community identified in local or regional plans, policies, regulations or by the California Department of Fish and Game or U.S. Fish and Wildlife Service?
 - X
d) Adversely impact federally protected wetlands (including, but not limited to, marsh, vernal pool, coastal, etc.) either individually or in combination with the known or probable impacts of other activities through direct removal, filling, hydrological interruption, or other means?

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>X</th>
</tr>
</thead>
</table>

e) Interfere substantially with the movement of any resident or migratory fish or wildlife species or with established resident or migratory wildlife corridors, or impede the use of wildlife nursery sites?

<table>
<thead>
<tr>
<th></th>
<th>X</th>
</tr>
</thead>
</table>

f) Conflict with any local policies or ordinances protecting biological resources, such as a tree preservation policy or ordinance?

<table>
<thead>
<tr>
<th></th>
<th>X</th>
</tr>
</thead>
</table>

g) Conflict with the provisions of an adopted Habitat Conservation Plan, Natural Conservation Community Plan, or other approved local, regional, or state habitat conservation plan?

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>X</th>
</tr>
</thead>
</table>

a-f. Most of the proposed trail corridor traverses an existing rail corridor, generally devoid of significant biological habitat value. While the trail would Lizzie Creek (near Toro Street), but this drainage follows a culvert below the railroad grade. The rail trail would not require modification of the existing culvert or creek in this location. The trail would cross San Luis Obispo Creek near Pacific Street. In this case, a new bridge would be constructed parallel to existing rail bridge, which would clear span the creek, and would not affect this drainage. The trail would cross Foothill Creek near Foothill Boulevard. As with Lizzie Creek, the trail would cross an existing culvert, and would not require modification of the culvert or drainage.

However, the proposed trail corridor would require bridge construction across San Luis Obispo Creek. Bridge construction across this corridor could temporarily disturb such resources through direct loss of vegetation and increased erosion and sedimentation. Riparian corridors support the highest diversity and abundance of plant and animal life in the study area.

The most common riparian community within study area drainages is Central Coast Arroyo Willow Riparian Forest (Holland, 1986). Riparian woodlands support a diverse assemblage of resident and migratory wildlife species, as well as provide prey base for a variety of predatory species. Two Threatened or Endangered animal species are known or expected to occur within riparian and aquatic habitats of San Luis Obispo Creek within the project vicinity. These include the Federally Threatened California red-legged frog and steelhead trout - Central California Coast Evolutionary Significant Unit (ESU). Mitigation measures would be required.

Because there would be no long term disturbance of biological resources along the trail corridor, no additional mitigation would be required. However, in the event that the creek crossing would be designed in such a way as to modify the drainages in question, the project would be subject to requirements of the California Department of Fish and Game (CDFG). The CDFG also has authority under Section 1600 et. seq. of the Fish and Game Code to reach an agreement regarding conservation of fish and wildlife resources whenever a project alters the natural flow or bed, channel, or bank of any river, stream, or lake.

The U.S. Fish and Wildlife Service (USFWS) and CDFG also have regulatory authority over any endangered or threatened species under their respective Endangered Species Acts.

Construction of bike path segments within wetlands or other water of the U.S. requires a Section 404 permit or authorization from the U.S. Army Corps of Engineers, which would require measures to avoid, minimize impacts and to compensate for unavoidable impacts resulting in a loss of wetland habitat. When a project would alter the natural flow or bed, channel, or bank of any river, stream, or lake, a Section 1601 streambed alteration agreement would need to be obtained from the CDFG. Like the 404 permit, this agreement would be expected to include conditions that would require avoidance and compensation measures for impacts on riparian habitats. Preparation and implementation of the Stormwater Pollution Prevention Plans (SWPPPs) required under Section 401 of the Clean Water Act would alleviate potential direct and indirect impacts relating to increased erosion, sedimentation, and runoff from project construction.

Mitigation Measures. Although the project has included measures to reduce impacts associated with biological resources, the following additional mitigation measure is required to reduce potential
biological resource impacts to a less than significant level.

B-1 Best Management Practices during construction activities, as approved by the City’s environmental monitor, shall be employed to reduce impacts to water quality, particularly with regard to construction near drainages.

With the implementation of the above measures, impacts to endangered, rare, or threatened species, riparian and wetland habitat, and wildlife corridors would be reduced to a less than significant level.

f. As described above, the proposed project would not conflict with any local policies or ordinances protecting biological resources.

g. The proposed project would not conflict with the provisions of an adopted Habitat Conservation Plan, Natural Conservation Community Plan, or other approved local, regional, or state habitat conservation plan.

<table>
<thead>
<tr>
<th>ISSUES:</th>
<th>Potentially Significant Impact</th>
<th>Less Than Significant With Mitigation Incorporation</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>V. CULTURAL RESOURCES - Would the project:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a) Cause a substantial adverse change in the significance of a historical resource which is either listed or eligible for listing on the National Register of Historic Places, the California Register of Historic Resources, or a local register of historic resources?</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>b) Cause a substantial adverse change in the significance of a unique archaeological resources (i.e., an artifact, object, or site about which it can be clearly demonstrated that, without merely adding to the current body of knowledge, there is a high probability that it contains information needed to answer important scientific research questions, has a special and particular quality such as being the oldest or best available example of its type, or is directly associated with a scientifically recognized important prehistoric or historic event or person)?</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>c) Disturb or destroy a unique paleontological resource or site?</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>d) Disturb any human remains, including those interred outside of formal cemeteries?</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

a-d. The proposed alignment traverses an historically rich area, which includes structures that contribute to the area’s unique character and heritage. Trail construction would not affect any such buildings, and in fact would incorporate features intended to heighten public awareness of the area’s historical character. Bridges that may be constructed to cross creeks would be new, and would not affect any existing bridges along the corridor, including the rail bridges that cross San Luis Obispo Creek, Monterey Street, and U.S. Highway 101. The bike path would be located within the existing railroad bridge over U.S. Highway 101, but would not require structural modification of the bridge. At the same time, construction of the proposed trail has the potential to disturb unknown cultural resources. The San Luis Obispo area was once within the territory of the Chumash and other Native American groups. Several archaeological sites have been recorded within the area, which is known to have supported extensive Chumash settlement because of its access to water and favorable topography. However, no comprehensive survey of the proposed trail alignment has been conducted. Still, the likelihood of disturbing unknown resources is low, because the rail alignment has already been extensively modified and graded when the railroad was constructed.

The City’s Railroad District Plan (1998) identifies historic resources within the Railroad District, which includes a portion of the proposed trail corridor. The existing rail bridge over Johnson Avenue is identified as a locally...
important historic resource (however, it has neither state nor federal status). Built in 1956, the bridge replaced an earlier bridge built in the 1800s. The Railroad District Plan calls for a future bikeway crossing parallel to the existing bridge: “install a bridge over Johnson Avenue to allow future extension of the railroad bikeway north to Cal Poly University” (Railroad District Plan, Action 1.0.2). Figure 11 shows the proposed design of the bikeway bridge, which would be a separate structure, not affecting the existing Johnson Avenue bridge, consistent with the Railroad District Plan. Other historic resources within the Railroad District near the trail alignment, including the train depot, Southern Pacific Transportation Company building, Alano Club building, and Park Hotel, would not be displaced or affected by proposed development. Other identified resoures (water tower and signal repair shop site) are located on the opposite (east) side of the railroad tracks, and would not be affected.

If any significant archaeological resources existed onsite, it is highly likely that they would have been destroyed through previous grading activities. While the proposed project is not expected to significantly impact cultural, historical, archaeological or paleontological resources, the following mitigation measure is recommended as a substitute mitigation in lieu of a Phase I survey and is a condition of project approval to mitigate in the unlikely event that cultural resources are uncovered during site grading. Impacts would be less than significant with required mitigation.

Mitigation Measure. The following mitigation measure would address potential impacts related to cultural resources:

C-1 At the commencement of project construction, a qualified archaeologist shall give all workers associated with earth disturbing procedures an orientation regarding the possibility of exposing unexpected cultural remains and directed as to what steps are to be taken if such a find is encountered. If any cultural resources are encountered during construction, construction shall cease immediately and procedures established by the Advisory Council on Historic Preservation concerning the protection and preservation of historic and cultural properties shall be followed. In this event, a qualified archeologist with local expertise shall be consulted immediately in order to assess the nature, extent, and possible significance of any cultural remains encountered.

If human remains are unearthed, State Health and Safety Code Section 7050.5 requires that no further disturbance shall occur until the County Coroner has made the necessary findings as to origin and disposition pursuant to Public Resources Code Section 5097.98. If the remains are determined to be of Native American descent, the coroner has 24 hours to notify the Native American Heritage Commission (NAHC). The NAHC will then identify the person(s) thought to be the Most Likely Descendent (MLD) of the deceased Native American, who will then help determine what course of action should be taken in dealing with the remains.

With the implementation of the above measure, impacts to cultural resources would be reduced to a less than significant level.
Figure 11. Proposed Johnson Avenue Bridge Design
VI. GEOLOGY AND SOILS - Would the project:

<table>
<thead>
<tr>
<th>a) Expose people or structures to potential substantial adverse effects, including the risk of loss, injury, or death involving:</th>
</tr>
</thead>
<tbody>
<tr>
<td>i) Rupture of a known earthquake fault, as delineated on the most recent Alquist-Priolo Earthquake Fault Zoning Map issued by the State Geologist for the area or based on other substantial evidence of a known fault?</td>
</tr>
<tr>
<td>ii) Strong seismic ground shaking?</td>
</tr>
<tr>
<td>iii) Seismic-related ground failure, including liquefaction?</td>
</tr>
<tr>
<td>iv) Inundation by seiche, tsunami, or mudflow?</td>
</tr>
<tr>
<td>v) Landslides?</td>
</tr>
<tr>
<td>vi) Flooding, including flooding as a result of the failure of a levee or dam?</td>
</tr>
</tbody>
</table>

b) Would the project result in substantial soil erosion or the loss of topsoil?	X
c) Would the project result in the loss of a unique geologic feature?	X
d) Is the project located on strata or soil that is unstable, or that would become unstable as a result of the project, and potentially result in on- or off-site landslide, lateral spreading, subsidence, liquefaction or collapse?	X
e) Is the project located on expansive soil creating substantial risks to life or property?	X
f) Where sewers are not available for the disposal of waste water, is the soil capable of supporting the use of septic tanks or alternative waste water disposal systems?	X

a-f. The proposed project corridor is located near known earthquake faults, but does not overlie an known mapped faults. The Los Osos Fault, adjacent to the City (paralleling Los Osos Valley Road), is identified under the State of California Alquist-Priolo Fault Hazards Act. This active fault’s main strand lies near the intersection of Los Osos Valley Road and Foothill Boulevard. The Los Osos Fault presents a high to very high fault rupture hazard to development and facilities in the Los Osos Valley. Other faults in the vicinity of the City are the West Huasna, Oceanic, and Edna faults. These faults are considered potentially active and present a moderate fault rupture hazard to developments near them. Several faults are capable of producing strong ground motion in San Luis Obispo. These include the Los Osos, Point San Luis, Black Mountain, Rinconada, Wilmar, Pecho, Hosgri, La Panza, and San Andreas faults. In the event of an earthquake, the potential for strong groundshaking is relatively high throughout the San Luis Obispo area, particularly since much of the area (including the project corridor) lies on alluvium.

Soils with high risk for liquifaction are typically sandy and in flood plains or close to lakes. Liquefaction potential along the proposed corridor is relatively high, primarily because most of this area is underlain with alluvial soils. There are no unique geologic features in the project area, nor would the trail be located on unstable strata. There are known expansive soils in the vicinity of the trail alignment. The potential for landslide is low, as the alignment traverses relatively flat areas, away from steep hillsides.

A tsunami is a tidal wave produced by off-shore seismic activity; seiches are seismically-induced waves that occur in large bodies of water. Because the site is located approximately 8 miles inland of the coast, tsunamis are not considered to be a significant concern. Because the site is not in proximity to a large body of water, seiches are not considered to be a significant concern. Volcanic hazards are not identified as potential hazards in the Safety Element of the City of San Luis Obispo General Plan (July 2000).

The proposed trail alignment is not located downstream of any dam. Therefore, flooding would not occur as a result of the failure of a levee or dam. No mitigation is required.
ISSUES: Potentially Significant Impact
Less Than Significant With Mitigation Incorporation
Less Than Significant Impact
No Impact

VII. HAZARDS AND HAZARDOUS MATERIALS
- Would the project:

a) Create a significant hazard to the public or the environment through the routine transport, use, or disposal of hazardous materials?
X

b) Create a significant hazard to the public or the environment through reasonably foreseeable upset and accident conditions involving the likely release of hazardous materials into the environment?
X

c) Reasonably be anticipated to emit hazardous emissions or handle hazardous or acutely hazardous materials, substances, or waste within one-quarter mile of an existing or proposed school?
X

d) Is the project located on a site which is included on a list of hazardous materials sites compiled pursuant to Government Code Section 65962.5 and, as a result, would it create a significant hazard to the public or the environment?
X

e) For a project located within an airport land use plan or, where such a plan has not been adopted, within two miles of a public airport or public use airport, would the project result in a safety hazard for people residing or working in the project area?
X

f) For a project within the vicinity of a private airstrip, would the project result in a safety hazard for people residing or working in the project area?
X

g) Impair implementation of or physically interfere with an adopted emergency response plan or emergency evacuation plan?
X

h) Expose people or structures to the risk of loss, injury or death involving wildland fires, including where wildlands are adjacent to urbanized areas or where residences are intermixed with wildlands?
X

a-d. Use of the proposed trail would not result in the handling or production of toxic or hazardous wastes. The proposed trail would also traverse industrial areas within its urban portions. Some industrial facilities may produce hazardous materials, which could adversely affect trail users. In addition, the Railroad Safety Trail would be located within a rail right of way, which typically has a high level of soil contamination due to ongoing rail operations. There is also a high potential for encountering underground pipeline facilities along this corridor, and the construction of the trail has the potential to impact these facilities. Mitigation is required.

The trail does not traverse agricultural areas, so no impacts resulting from exposure to agricultural operations would occur.

Mitigation Measures. The following mitigation measure is required to reduce human health impacts during the construction, use, and maintenance of the proposed trail:

H-1 Environmental monitoring of all grading activities shall be performed by a qualified environmental professional. The environmental professional shall be notified if any discolored soil or odor is discovered during construction activities which are not monitored. If contaminants are identified, evaluation and, if necessary, remediation of the site shall be coordinated with appropriate regulatory authorities to ensure that applicable remediation standards are met. Evaluation of any encountered contaminants will be made to ensure that construction workers are not exposed to an unhealthful working environment.
If the mitigation measure above is implemented, the impacts related to exposure of toxic chemicals to trail users would be reduced to less than significant levels.

e-h. The proposed project is not located within an airport land use plan or within two miles of a private airport, public airport or public use airport, and therefore would not result in a safety hazard for people residing or working in the project area. The proposed project would reduce vehicular trips on local roadways, and therefore, would not impair the implementation of or physically interfere with any adopted emergency response plan or emergency evacuation plans. The potential for wildland fires is considered low, as the corridor and adjacent parcels do not support overgrown brush that would be required to fuel such events. Impacts would therefore be less than significant.

<table>
<thead>
<tr>
<th>ISSUES:</th>
<th>Potentially Significant Impact</th>
<th>Less Than Significant With Mitigation Incorporation</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>VIII. HYDROLOGY AND WATER QUALITY - Would the project:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a) Violate Regional Water Quality Control Board water quality standards or waste discharge requirements?</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>b) Substantially deplete groundwater supplies or interfere substantially with groundwater recharge such that there would be a net deficit in aquifer volume or a lowering of the local groundwater table level (i.e., the production rate of pre-existing nearby wells would drop to a level which would not support existing land uses or planned uses for which permits have been granted)?</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>c) Substantially alter the existing drainage pattern of the site or area, including through the alteration of the course of a stream or river, in a manner which would result in substantial erosion or siltation on- or off-site?</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>d) Substantially alter the existing drainage pattern of the site or area, including through the alteration of the course of a stream or river, or substantially increase the rate or amount of surface runoff in a manner that would result in flooding on- or off-site?</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>e) Create or contribute runoff water which would exceed the capacity of existing or planned stormwater drainage systems to control?</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>f) Place housing within a 100-year floodplain, as mapped on a federal Flood Hazard Boundary or Flood Insurance Rate Map or other flood hazard delineation map?</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>g) Place within a 100-year floodplain structures which would impede or redirect flood flows?</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

a-e. The proposed project would increase the impermeable surface of the project site over current conditions. The corridor is currently mostly covered with impervious surfaces, including concrete. However, it also includes crushed gravel along the railroad tracks, which is slightly more pervious than concrete. Construction of the Class I trail would include a 12-foot wide asphalt corridor of impervious surface. The Class II portions of the trail would be five feet wide and constructed of concrete. Impervious trail surfaces would incrementally increase the amount of runoff following storm events. However, the linear nature of the trail, and its relatively narrow width, would minimize runoff potential at any given location.

Public restrooms would be included at various staging areas along the corridor. Public restrooms would be connected to municipal wastewater systems. For this reason, no impact to groundwater is anticipated.

Regulations under the federal Clean Water Act require that a National Pollution Discharge Elimination System
(NPDES) storm water permit be obtained for projects that would disturb greater than five acres during construction. Because it would disturb more than five acres, the trail project would be subject to NPDES permitting requirements. Acquisition of such a permit depends on the preparation of a Storm Water Pollution Prevention Plan (SWPPP) that contains specific actions, termed Best Management Practices (BMPs), to control the discharge of pollutants, including sediment, into local surface water drainages.

Mitigation Measures. The following measure is required to reduce potential water quality impacts resulting from the construction and operation of the trail.

HWQ-1 A Storm Water Pollution Prevention Plan (SWPPP) shall be developed prior to the initiation of grading for any segment and implemented for all construction activity. The SWPPP shall include specific BMPs to control the discharge of material from the site. BMPs may include, but would not be limited to:

- seeding and mulching of bare surfaces;
- use of straw bales and rock dams;
- soil wetting during high wind conditions;
- soil stabilizers; and
- revegetation of all slopes as soon as possible following construction

The measures above would reduce potential water quality impacts to less than significant levels.

f-g. The Railroad Safety Trail is outside the 100-year flood plain. Impacts to proposed facilities constructed along the alignment would be less than significant.

The proposed trail would require construction of crossings over San Luis Obispo Creek. Although the bridge is intended to freely span the construction of these crossings could result in drainage problems and potential flooding upstream if the flow path of the waterway is constricted or obstructed by the trail bridge, or by debris caught behind the new bridge. This is considered a significant but mitigable impact.

Mitigation Measures. The following measures are required to reduce potential impacts resulting from the construction of waterway crossings.

HWQ-2 At the time that each of the identified trail segments would be constructed, the plans for the proposed creek bridges shall be submitted to the Engineering Department of the jurisdiction in which the segment is located for review and approval. Bridges must be designed to ensure that pre-project flood flows are maintained, such that upstream flooding does not occur. All recommendations in bridge design made by the Engineering Department shall be implemented.

HWQ-3 Within 30 days following a substantial rainfall, bridges along the trail shall be inspected to ensure that debris has not collected and constricted water flow. If such debris is found, it shall be immediately removed.

The measures above would reduce potential flooding impacts to less than significant.
ISSUES:

<table>
<thead>
<tr>
<th>IX. LAND USE AND PLANNING - Would the project:</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Physically divide an established community?</td>
</tr>
<tr>
<td>b) Conflict with any applicable land use plan, policy, or regulation of an agency with jurisdiction over the project (including, but not limited to the general plan, specific plan, local coastal program, or zoning ordinance) adopted for the purpose of avoiding or mitigating an environmental effect?</td>
</tr>
<tr>
<td>c) Conflict with any applicable habitat conservation plan or natural communities conservation plan?</td>
</tr>
</tbody>
</table>

a. The proposed trail would traverse or be located near residential, commercial, and industrial areas. However, the new trail would not divide any of these established neighborhoods. In fact, the proposed trail would link residential areas to commercial development, which implements General Plan goals related to land use and circulation. This is considered a beneficial impact.

b. General Plan land use designations vary along the route of the corridor. Typically, the corridor traverses areas designated as Open Space or Public Facilities. In some locations, the trail corridor would cross areas designated for Business Park or Office. Zoning surrounding the bike trail consists of conservation/open space, agriculture, commercial services, office/planned development, industrial, public facilities, and residential areas. The proposed bike trail is considered consistent with all the General Plan land use and City zoning designations within the project area. Additionally, the trail is intended to implement City General Plan Circulation Element goals calling for such a facility, and is consistent with the adopted Bicycle Transportation Plan. The General Plan Circulation Element states:

“The City will complete a continuous network of safe and convenient bikeways that connect neighborhoods with major activity centers and with county bike routes as specified by the Bicycle Transportation Plan (reference page 14, policy 3.3).”

For information regarding the projects consistency with specific General Plan policies, refer to the appropriate sections within this document (i.e. Biological Resources, Noise, Transportation, etc.).

c. The proposed project would not conflict with any habitat conservation plan or natural communities conservation plan. Refer to Section IV for a further discussion regarding potential impacts to biological resources. No impact would occur.

<table>
<thead>
<tr>
<th>X. MINERAL RESOURCES - Would the project:</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Result in the loss of availability of a known mineral resource classified MRZ-2 by the State Geologist that would be of value to the region and the residents of the state?</td>
</tr>
<tr>
<td>b) Result in the loss of availability of a locally-important mineral resource recovery site delineated on a local general plan, specific plan or other land use plan?</td>
</tr>
</tbody>
</table>

a,b. Development of the proposed trail would not affect known mineral resource deposits, and no minerals are currently being extracted along the corridor. A new trail would not affect mineral resources, nor impede any existing or potential mining operations. Project development would not result in significant impacts to mineral resources.
XI. NOISE - Would the project result in:

<table>
<thead>
<tr>
<th></th>
<th>Potentially Significant Impact</th>
<th>Less Than Significant With Mitigation Incorporation</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>a)</td>
<td>Exposure of persons to or generation of noise levels in excess of standards established in the local general plan or noise ordinance, or applicable standards of other agencies?</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b)</td>
<td>Exposure of persons to or generation of excessive groundborne vibration or groundborne noise levels?</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c)</td>
<td>A substantial permanent increase in ambient noise levels in the project vicinity above levels existing without the project?</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>d)</td>
<td>A substantial temporary or periodic increase in ambient noise levels in the project vicinity above levels existing without the project?</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>e)</td>
<td>For a project located within an airport land use plan or, where such a plan has not been adopted, within two miles of a public airport or public use airport, would the project expose people residing or working in the project area to excessive noise levels?</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>f)</td>
<td>For a project within the vicinity of a private airstrip would the project expose people residing or working in the project area to excessive noise levels?</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a-d. The proposed trail and its users would not generate substantial noise. However, adjacent residents may perceive that noise levels would increase periodically, when users stop on the trail near their homes and engage in common social activities. However, this type of activity already occurs in neighborhoods, when cyclists use local roadways. There is no information to suggest that these types of activities would result in significant noise impacts. The trail would generally parallel the railroad, and users would occasionally be exposed to high noise levels exceeding 65 dBA Ldn when trains pass. However, infrequent and short duration noise would not significantly impact potential trail users, who are accustomed to varying levels of ambient noise within urban areas.

e,f. The proposed project site would be located along the rail corridor, in an area outside San Luis Obispo County Airport’s general traffic pattern area. Noise from the airport would be less than significant.

XII. POPULATION AND HOUSING -- Would the project:

<table>
<thead>
<tr>
<th></th>
<th>Potentially Significant Impact</th>
<th>Less Than Significant With Mitigation Incorporation</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>a)</td>
<td>Induce substantial population growth in an area, either directly (for example, by proposing new homes and businesses) or indirectly (for example, through extension of roads or other infrastructure)?</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b)</td>
<td>Displace substantial numbers of existing housing, necessitating the construction of replacement housing elsewhere?</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c)</td>
<td>Displace substantial numbers of people, necessitating the construction of replacement housing elsewhere?</td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a-c. The proposed trail would incrementally increase the concentration of human activity along the trail alignment, but would not accommodate any new permanent residents. As a non-motorized transportation facility, it would not generate new population or housing. Project development would occur along an existing rail right-of-way, and would not result in the displacement of any existing homes or residents. Impacts would be less than significant.
XIII. PUBLIC SERVICES

Would the project result in substantial adverse physical impacts associated with the provision of new or physically altered governmental facilities, need for new or physically altered governmental facilities, the construction of which could cause significant environmental impacts, in order to maintain acceptable service ratios, response times or other performance objectives for any of the public services:

<table>
<thead>
<tr>
<th></th>
<th>Potentially Significant Impact</th>
<th>Less Than Significant With Mitigation Incorporation</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Fire protection?</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b) Police protection?</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c) Schools?</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d) Parks?</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>e) Other public facilities?</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a-e. Development of a new trail would not be expected to result in a significant impact on public services. Increased activity along the railroad line may result in increased loitering-related calls to law enforcement agencies. Trail use may also increase calls for emergency service, primarily for paramedics in the event of an injury. However, the level of activity on the trail would be insufficient to significantly increase demand on these services. The trail may also provide better access to the railroad right-of-way and improve public safety along the corridor. It could also improve emergency response to events along the corridor.

Trail use would not adversely impact existing schools. It may increase activity at nearby parks that may be made more accessible by the trail. This is considered a potentially beneficial impact. As a recreational amenity, the trail would inherently improve recreational opportunities in the communities that it would serve.

XIV. RECREATION

a) Would the project increase the use of existing neighborhood and regional parks or other recreational facilities such that substantial physical deterioration of the facility would occur or be accelerated?

<table>
<thead>
<tr>
<th></th>
<th>Potentially Significant Impact</th>
<th>Less Than Significant With Mitigation Incorporation</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>a)</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

b) Does the project include recreational facilities or require the construction or expansion of recreational facilities that might have an adverse physical effect on the environment?

<table>
<thead>
<tr>
<th></th>
<th>Potentially Significant Impact</th>
<th>Less Than Significant With Mitigation Incorporation</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>b)</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a,b. The proposed trail is in part a recreational facility, recognized as a citywide and regional amenity by the City's general plan. Its implementation would help achieve regional recreation-related goals shared by the City and San Luis Obispo County. Impacts would be beneficial. The facility would enhance the linkage of parks and other recreational facilities in the City. The project would entail the construction of a linear recreational trail facility near creek corridors. Potential impacts related to creeks are discussed in Section IV., Biological Resources.
ISSUES:

<table>
<thead>
<tr>
<th>XV. TRANSPORTATION/TRAFFIC - Would the project:</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Cause an increase in traffic which is substantial in relation to the existing traffic load and capacity of the street system (i.e., result in a substantial increase in either the number of vehicle trips, the volume to capacity ratio on roads, or congestion at intersections)?</td>
</tr>
<tr>
<td>b) Exceed, either individually or cumulatively, a level of service standard established by the county congestion management agency for designated roads or highways?</td>
</tr>
<tr>
<td>c) Result in a change in air traffic patterns, including either an increase in traffic levels or a change in location that results in substantial safety risks?</td>
</tr>
<tr>
<td>d) Substantially increase hazards to a design feature (e.g., sharp curves or dangerous intersections) or incompatible uses (e.g., farm equipment)?</td>
</tr>
<tr>
<td>e) Result in inadequate emergency access?</td>
</tr>
<tr>
<td>f) Result in inadequate parking capacity?</td>
</tr>
<tr>
<td>g) Conflict with adopted policies supporting alternative transportation (e.g., bus turnouts, bicycle racks)?</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Potentially Significant Impact</th>
<th>Less Than Significant With Mitigation Incorporation</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a,b. Development of the trail facility is intended to change existing vehicular traffic patterns. It is anticipated that a small percentage of commuters currently using automobiles would instead use bicycles on the trail facility. The trail is consistent with regional and local goals and policies that encourage alternative modes of transportation. It would not result in increased traffic or parking demand on regional roadways.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Project implementation could result in conflicts between automobiles and either bicycles or pedestrians. Such conflicts would be most pronounced at grade crossings of major streets, most notably at Marsh Street and Foothill Boulevard. The project would address potential vehicle conflicts at these intersections through signage, trail markings, and appropriate traffic controls at these intersections. Lighting would be included at these intersections.

Signs along the trail shall be designed to meet all of the required and recommended signing and marking standards developed by Caltrans in Chapter 1000 of the Highway Design Manual. In addition, all signs and markings should conform to the standards developed in the Manual of Uniform Traffic Control Devices (MUTCD). In general, all signs should be located at least 0.9 meter (3-feet) from the edge of the paved surface. The signs should have a minimum vertical clearance of 2.6 meters (8.5-feet) when located above the trail, and be a minimum of 1.2 meters (4-feet) above the trail surface when located on the side of the trail. All signs should be oriented so as not to confuse motorists. The designs (though not the size) of signs and markings should be the same as used for motor vehicles.

Whenever possible, existing crosswalks and traffic signals will be used to allow trail users to travel over motor vehicle travel lanes, and additional or enhanced crossing controls were included at modified crossings.

Mitigation Measures. The following mitigation measures shall be incorporated into project design to ensure that impacts are less than significant:

T-1 At the Marsh Street and Foothill Boulevard intersections, the trail should include permanent lighting, and the trail should be aligned to use signalized intersections. Signs on these roadways shall be installed to warn motorists of upcoming bike crossings. Also, signs shall be installed restricting right hand turns during red lights while the bicycle/pedestrian signal is green.

T-2 Caution signs warning motorists of trail users shall be installed in areas where roads would be crossed by trail users prior to the trail segment being open for use.
Mitigation measures would reduce impacts to a less than significant level.

c. The project would not result in any impacts to air traffic patterns.

d. The project would not increase hazards to any existing roadway, or include a design to increase potential hazards. The trail would be designed to incorporate “Cal Trans minimum turn radii, except a sharper turn is used to slow bikers down at hazardous areas.” However, the trail would generally parallel an active rail line, resulting in potential conflicts between trail users and trains. At its narrowest, the rail corridor would be about 26 feet wide. This would occur as it goes underneath the Mill Street bridge. In this location, the 9-foot wide trail would be separated from the 17-foot wide rail corridor by a 6-foot high security fence. Union Pacific Railroad has a minimum 8.5-foot setback for proposed construction from the centerline of the existing railroad tracks. Although the typical setback used throughout the trail corridor is 12 feet from the track centerline, it would be the minimum 8.5-foot width under the Mill Street bridge. Mitigation is required to ensure trail user safety in areas where the setback from rail centerline is less than 10 feet.

Mitigation Measures. The following mitigation measure shall be incorporated into project design to ensure that impacts are less than significant:

T-3 At locations where the distance from the railroad centerline to the security fence separated the railroad from the bike trail is less than 10 feet, the separating barrier shall be constructed of a material that discourages trail users from gaining access to the rail line, and that would protect trail users from flying debris and gravel kicked up by passing trains. Such materials should be solid wood or other similar material (possibly chainlink fence with baffles), at least 8 feet in height, and should be able to block flying debris.

e. The project would include staging areas and would cross several roadways, allowing good access for emergency vehicles along its length. The trail, and any bridges associated with the trail, would be designed to accommodate emergency vehicles.

f. The proposed project would not impact existing or planned parking facilities. It would include parking provisions at staging areas for the trail to accommodate trail users.

g. In 1993 the City adopted the Bicycle Transportation Plan (BTP) that calls for the completion of a rich network of bikeways that link all parts of our community and serves people using bicycles for everyday transportation and for recreation. The BTP identifies a network of off-street bike paths that adjoin the Union Pacific Railroad. These paths are intended to link neighborhoods with major destinations in San Luis Obispo and provide opportunities for recreational bicycling, walking, and roller-blading, free from conflicts with motor vehicles. The Railroad Safety Trail is one of several links in the system is intended to implement the BTP.

This specific bikeway segments is consistent with the adopted Bicycle Transportation Plan. Its installation is also supported by the General Plan Circulation Element, which states:

“The City will complete a continuous network of safe and convenient bikeways that connect neighborhoods with major activity centers and with county bike routes as specified by the Bicycle Transportation Plan (reference page 14, policy 3.3).”

The proposed project includes several objectives related to supporting alternative transportation, including:

- Provide a functional facility that serves major and minor destinations, provides relatively direct connections in the City, and follows routes already identified in the Bicycle Transportation Plan.
- Provide an alternative to heavily traveled parallel roadways.
- Design and plan for a trail that will serve both commuter and recreational needs (a Class I bikeway).
- Design grade crossings at roadways to maximize trail user safety and maximize convenience, while minimizing negative impacts to traffic capacity.
- Look for logical street and highway crossings.
Avoid vehicle and pedestrian conflicts to the greatest extent possible
Utilize signalized intersections at street crossings where possible
Maintain consistency with the Bicycle Transportation Plan

The City’s Railroad District Plan (1998) identifies historic resources within the Railroad District, which includes a portion of the proposed trail corridor. The Plan identifies that a bicycle trail along the rail corridor is an important amenity that would help implement the goals of that plan.

<table>
<thead>
<tr>
<th>ISSUES:</th>
</tr>
</thead>
<tbody>
<tr>
<td>XVI. UTILITIES AND SERVICE SYSTEMS - Would the project:</td>
</tr>
<tr>
<td>a) Exceed wastewater treatment requirements of the applicable Regional Water Quality Control Board?</td>
</tr>
<tr>
<td>b) Require or result in the construction of new water or wastewater treatment facilities or expansion of existing facilities, the construction of which could cause significant environmental effects?</td>
</tr>
<tr>
<td>c) Require or result in the construction of new storm water drainage facilities or expansion of existing facilities, the construction of which could cause significant environmental effects?</td>
</tr>
<tr>
<td>d) Are sufficient water supplies available to serve the project from existing entitlements and resources, or are new or expanded entitlements needed?</td>
</tr>
<tr>
<td>e) Has the wastewater treatment provider which serves or may serve the project determined that it has adequate capacity to serve the project's projected demand in addition to the provider's existing commitments?</td>
</tr>
<tr>
<td>f) Is the project served by a landfill with sufficient permitted capacity to accommodate the project's solid waste disposal needs, and, does the project comply with federal, state, and local statutes and regulations related to solid waste?</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Potentially Significant Impact</th>
<th>Less Than Significant With Mitigation Incorporation</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

a, b, d, e, f. Trail users would already be residents of the area, so there would be no additional impacts to public utilities. The project would not generate substantial water use. Water used on site would be limited to landscaping and trail users using drinking fountains. Impacts to water and wastewater conveyance systems would be less than significant. Trail users would not generate substantial solid waste, and thus would not impact area landfill capacity.

c. Trail implementation may require new storm drainage facilities near the trail, since local drainage patterns could be altered. The trail’s success depends in part on the facility being well-drained. However, storm drain facilities would be included in the trail design, and designed to ensure that local drainage and/or flooding problems do not occur. Impacts are anticipated to be less than significant with proper project design. The trail would not impose a barrier that could substantially impede drainage in the area.

The project alignment could ultimately affect the placement of some of Union Pacific’s signal wires that are currently located in the right-of-way. Ultimately, the railroad would negotiate with the city regarding the placement of railroad infrastructure within the right-of-way. One possibility is to place the wires underground. If this occurred, this would result in a potentially beneficial aesthetic and safety impact.
XVII. MANDATORY FINDINGS OF SIGNIFICANCE

<table>
<thead>
<tr>
<th></th>
<th>Potentially Significant Impact</th>
<th>Less Than Significant With Mitigation Incorporation</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Does the project have the potential to degrade the quality of the environment, substantially reduce the habitat of a fish or wildlife species, cause a fish or wildlife population to drop below self-sustaining levels, threaten to eliminate a plant or animal community, reduce the number or restrict the range of a rare or endangered plant or animal or eliminate important examples of the major periods of California history or prehistory?</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b) Does the project have the potential to achieve short-term, to the disadvantage of long-term, environmental goals?</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c) Does the project have impacts that are individually limited, but cumulatively considerable? (“Cumulatively considerable” means that the incremental effects of a project are considerable when viewed in connection with the effects of past projects, the effects of other current projects, and the effects of probable future projects)?</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>d) Does the project have environmental effects that will cause substantial adverse effects on human beings, either directly or indirectly?</td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a. Based upon the project’s proposed design and required mitigation measures, it has been determined that the proposed project would not have the potential to degrade the quality of the environment, substantially reduce the habitat of a fish or wildlife species, cause a fish or wildlife population to drop below self-sustaining levels, threaten to eliminate a plant or animal community, reduce the number or restrict the range of a rare or endangered plant or animal or eliminate important examples of the major periods of California history or prehistory.

b-d. Because impacts with respect to certain issues discussed previously would be addressed through conditions of approval incorporated into the project, the proposed project does not have the potential to achieve short-term, to the disadvantage of long-term, environmental goals. Similarly, it would not result in impacts that are individually limited, but cumulatively considerable, and would not cause substantive adverse effects on human beings, either directly or indirectly.

REFERENCES:

- City of San Luis Obispo’s Bicycle Transportation Plan and existing Bicycle Route Maps
- City of San Luis Obispo’s Zoning Regulations and Maps
- City of San Luis Obispo General Plan
- City of San Luis Obispo’s Mid-Higuera Enhancement Plan
- Stream Corridor Management Plan for San Luis Obispo Creek, Phase 1 Study Area, dated May 2, 1997. Prepared by Questa Engineering Corporation in association with Morro Group Biological Consultants
- Cal Trans Highway Design Manual, Chapter 1000- Bikeway Planning and Design
- AASHTO’s Guidelines for the Development of Bicycle Facilities
- McBride proposed Development Plan
- Dalido proposed Development Plan and Environmental Impact Report
- Cal Trans Route 101/ Prado Road Interchange Plan
- Ongoing data review of Questa Engineering Corporation’s Zone 9 Flood Study
SUMMARY OF MITIGATION MEASURES

<table>
<thead>
<tr>
<th>Biological Resources:</th>
</tr>
</thead>
<tbody>
<tr>
<td>B-1 Best Management Practices during construction activities, as approved by the City’s environmental monitor, shall be employed to reduce impacts to water quality, particularly with regard to construction near drainages.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cultural Resources:</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-1 At the commencement of project construction, a qualified archaeologist shall give all workers associated with earth disturbing procedures an orientation regarding the possibility of exposing unexpected cultural remains and directed as to what steps are to be taken if such a find is encountered. If any cultural resources are encountered during construction, construction shall cease immediately and procedures established by the Advisory Council on Historic Preservation concerning the protection and preservation of historic and cultural properties shall be followed. In this event, a qualified archeologist with local expertise shall be consulted immediately in order to assess the nature, extent, and possible significance of any cultural remains encountered.</td>
</tr>
</tbody>
</table>

If human remains are unearthed, State Health and Safety Code Section 7050.5 requires that no further disturbance shall occur until the County Coroner has made the necessary findings as to origin and disposition pursuant to Public Resources Code Section 5097.98. If the remains are determined to be of Native American descent, the coroner has 24 hours to notify the Native American Heritage Commission (NAHC). The NAHC will then identify the person(s) thought to be the Most Likely Descendent (MLD) of the deceased Native American, who will then help determine what course of action should be taken in dealing with the remains.

<table>
<thead>
<tr>
<th>Hazards and Hazardous Materials:</th>
</tr>
</thead>
<tbody>
<tr>
<td>H-1 Environmental monitoring of all grading activities shall be performed by a qualified environmental professional. The environmental professional shall be notified if any discolored soil or odor is discovered during construction activities which are not monitored. If contaminants are identified, evaluation and, if necessary, remediation of the site shall be coordinated with appropriate regulatory authorities to ensure that applicable remediation standards are met. Evaluation of any encountered contaminants will be made to ensure that construction workers are not exposed to an unhealthful working environment.</td>
</tr>
</tbody>
</table>
SUMMARY OF MITIGATION MEASURES

Hydrology and Water Quality:

HWQ-1 A Storm Water Pollution Prevention Plan (SWPPP) shall be developed prior to the initiation of grading for any segment and implemented for all construction activity. The SWPPP shall include specific BMPs to control the discharge of material from the site. BMPs may include, but would not be limited to:

- seeding and mulching of bare surfaces;
- use of straw bales and rock dams;
- soil wetting during high wind conditions;
- soil stabilizers; and
- revegetation of all slopes as soon as possible following construction

HWQ-2 At the time that each of the identified trail segments would be constructed, the plans for the proposed creek bridges shall be submitted to the Engineering Department of the jurisdiction in which the segment is located for review and approval. Bridges must be designed to ensure that pre-project flood flows are maintained, such that upstream flooding does not occur. All recommendations in bridge design made by the Engineering Department shall be implemented.

HWQ-3 Within 30 days following a substantial rainfall, bridges along the trail shall be inspected to ensure that debris has not collected and constricted water flow. If such debris is found, it shall be immediately removed.

Transportation/Traffic:

T-1 At the Marsh Street and Foothill Boulevard intersections, the trail should include permanent lighting, and the trail should be aligned to use signalized intersections. Signs on these roadways shall be installed to warn motorists of upcoming bike crossings. Also, signs shall be installed restricting right hand turns during red lights while the bicycle/pedestrian signal is green.

T-2 Caution signs warning motorists of trail users shall be installed in areas where roads would be crossed by trail users prior to the trail segment being open for use.

T-3 At locations where the distance from the railroad centerline to the security fence separated the railroad from the bike trail is less than 10 feet, the separating barrier shall be constructed of a material that discourages trail users from gaining access to the rail line, and that would protect trail users from flying debris and gravel kicked up by passing trains. Such materials should be solid wood or other similar material, at least 8 feet in height, and should be able to block flying debris.