Safe Routes to School Plan

Bishop’s Peak & Pacheco Elementary Schools

Adopted August 15, 2017
Acknowledgements

City Council
Heidi Harmon, Mayor
Carlyn Christianson
Aaron Gomez
Andy Pease
Dan Rivoire

Public Works Department
Daryl Grigsby, Director
Timothy Bochum, Deputy Director
Jake Hudson, Transportation Manager
Luke Schwartz, Transportation Planner-Engineer
Adam Fukushima, Active Transportation Manager

Bicycle Advisory Committee
Lea Brooks
Jenna Espinosa
Timothy Jouet
Ken Kienow
Layla Lopez
Jonathan Roberts
Howard Weisenthal

Partner Agencies
San Luis Coastal Unified School District
Bishop’s Peak Elementary
Pacheco Elementary
San Luis Obispo Council of Governments
San Luis Obispo County Public Health Dept
California Department of Transportation
California Polytechnic State University

Citizens of San Luis Obispo
The many residents, parents, and students who participated in the Plan. Thank you!
Safe Routes to School Improvements for Bishop’s Peak & Pacheco Elementary Schools

Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>Background</td>
<td>1</td>
</tr>
<tr>
<td>How to Use This Plan</td>
<td>3</td>
</tr>
<tr>
<td>II. ABOUT SAFE ROUTES TO SCHOOL</td>
<td>4</td>
</tr>
<tr>
<td>What is Safe Routes to School?</td>
<td>4</td>
</tr>
<tr>
<td>Relationship to 5 E’s</td>
<td>4</td>
</tr>
<tr>
<td>Other Relevant Plans, Projects and Programs</td>
<td>4</td>
</tr>
<tr>
<td>III. NEEDS ASSESSMENT</td>
<td>6</td>
</tr>
<tr>
<td>Community Outreach</td>
<td>6</td>
</tr>
<tr>
<td>Existing Conditions Review</td>
<td>6</td>
</tr>
<tr>
<td>Summary of Needs Assessment</td>
<td>11</td>
</tr>
<tr>
<td>IV. RECOMMENDATIONS</td>
<td>14</td>
</tr>
<tr>
<td>Transportation Improvement Project Recommendations</td>
<td>14</td>
</tr>
<tr>
<td>Coordination, Enforcement & Education Recommendations</td>
<td>22</td>
</tr>
<tr>
<td>Plan Evaluation</td>
<td>23</td>
</tr>
<tr>
<td>Implementation Strategies</td>
<td>23</td>
</tr>
<tr>
<td>APPENDICES</td>
<td></td>
</tr>
<tr>
<td>A – Project Fact Sheets</td>
<td></td>
</tr>
<tr>
<td>B – Traffic Data and Analysis</td>
<td></td>
</tr>
<tr>
<td>C – Adopting Resolution</td>
<td></td>
</tr>
</tbody>
</table>
I. Introduction

Background

Bishop’s Peak and Pacheco Elementary are two elementary schools nestled in vibrant neighborhoods of the City of San Luis Obispo. While ideally located in their neighborhoods and within reasonable walking or cycling distance to most residents, the clear majority of the students attending these schools arrive by car. This isn’t unique to these specific schools, or to the City of San Luis Obispo. Not long ago, children commonly moved around their neighborhood, and often to and from school, by foot or bicycle. In 1969, roughly 50 percent of children 5 to 14 years of age walked or bicycled to school nationwide. This figure was even higher—89 percent—for children who lived within one mile of school. Over time, these figures have decreased dramatically. As of 2009, only 13 percent of all children 5 to 14 years of age range walked or biked to school, and only 35 percent of those living within one mile of school did so.¹ ²

For school age children, the benefits of walking and bicycling are considerable. In addition to the health benefits of fighting physical inactivity and obesity, educators affirm that kids who walk or bike to school arrive brighter and more alert for their first morning class than those who have arrived by car. Biking and walking to school can also help children gain independence, think responsibly, and get to know their neighborhoods and environment better. Kids like it as well and often cite hanging out with their friends on the way to school as their favorite part of the experience.

Many factors contribute to the low rate of children walking and bicycling to school. Over time, traditional land use planning and transportation engineering decisions have improved the convenience of driving, often to the detriment of walking and bicycling. As auto traffic increases, parents often become less willing to allow their children to walk or bicycle to school due to traffic-related safety concerns. Parents of Bishop’s Peak and Pacheco Elementary students have echoed these concerns to city leaders, and clearly expressed their desire for improvements to make active forms of transportation—walking and biking—more viable options for their families. To address these requests, the City of San Luis Obispo has prepared this Safe Routes to School Plan.

The purpose of this Safe Routes to School Plan is to identify specific transportation improvements, education, outreach and enforcement strategies to make walking and bicycling to Bishop’s Peak and Pacheco Elementary Schools safe, accessible, and attractive options for children and their families.

The study area for the SRTS Plan is shown below in Figure 1.

¹ The National Center for Safe Routes to School, 2011.
Safe Routes to School Improvements for Bishop’s Peak & Pacheco Elementary Schools

1/2-Mile Walkshed/Bikeshed

Bishop’s Peak Elementary

Pacheco Elementary

FIGURE 1
SAFE ROUTES TO SCHOOL STUDY AREA
How to Use This Plan

This Safe Routes to School (SRTS) Plan is one of many tools available to staff and stakeholders to implement strategies to increase the safety and attractiveness of bicycling and walking to and from Bishop’s Peak and Pacheco Elementary Schools. The SRTS Plan provides a blueprint to guide transportation infrastructure investment priorities, traffic enforcement strategies, education and outreach programs to make active transportation modes more viable mobility options for students and families. It will be used in tandem with the City General Plan, Bicycle Transportation Plan, and private development review procedures to lead transportation improvement projects, and will be a helpful tool for the city in pursuing grant applications and during the biennial budget planning process.

Navigating the Plan – The remainder of the SRTS Plan is organized in into the following sections:

- **About Safe Routes to School – Page 4**
 What does the term “Safe Routes to School” mean, and what are the key elements of an effective SRTS Program? This section defines the term and the relevant city plans, programs and policies that support SRTS planning and implementation.

- **Needs Assessment – Page 6**
 What are the primary barriers to walking and bicycling to school? This section describes the most prevalent transportation safety and mobility issues identified by the parents and community members that deter children and families from walking and bicycling to school at Bishop’s Peak and Pacheco Elementary.

- **Recommendations – Page 14**
 What transportation improvements and enforcement/coordination measures are recommended to reduce barriers to walking and bicycling to school? This section identifies specific infrastructure projects, targeted traffic enforcement strategies, coordination activities, and describes implementation priorities and responsible agencies/parties.

- **Transportation Improvement Project Fact Sheets – Appendix A**
 Appendix A includes detailed fact sheets for each transportation improvement project recommended in the SRTS Plan. The project fact sheets include a description of the issue/concern that the project addresses, a summary of the recommended design features and conceptual design drawings (where applicable), planning-level cost estimates, and strategies for implementation.
II. About Safe Routes to School

What is Safe Routes to School?

Safe Routes to School (SRTS) is a program to create safe, dignified, and enjoyable opportunities to bicycle and walk to and from school. Starting in Scandinavia in the 1970s, SRTS is now an international movement with the goal to reverse the decline in children bicycling and walking to schools, increase safety, and address childhood obesity and inactivity.

Relationship to 5 E’s

According to the National Center for Safe Routes to School, a successful SRTS Program uses a comprehensive model of 5 E’s—Engineering, Education, Enforcement, Encouragement, and Evaluation—working together to make walking and bicycling to school safer and to increase the number of students and families who choose to walk and bike together.

Engineering

Considering operational and physical improvements surrounding schools that reduce speeds and potential conflicts with motor vehicle traffic and establishing more bike and pedestrian specific infrastructure such as crossing enhancements, sidewalks, and bikeways.

Education

Communicating to children, parents and those in the neighborhood about the safety in the vicinity of schools, as well as the broad range of transportation choices, as well as important safety skills in creating lifelong bicycling and walking behavior.

Enforcement

Partnering with local law enforcement to ensure traffic laws are obeyed in the vicinity of schools including enforcement of speeds, yielding to pedestrians in crossings, and proper walking and bicycling behavior.

Encouragement

Using events and activities to promote walking and bicycling such as Walk to School Day (October) and Bike to School Day (May) to drum up support and help normalize bicycling and walking as socially accepted and fun modes of transportation.

Evaluation

Collecting data before and after improvements or activities and monitoring the outcomes and trends in order to gauge effectiveness.

Other Relevant Plans, Projects and Programs

The Bishop’s Peak & Pacheco Elementary SRTS Plan is consistent with the City’s General Plan. The General Plan provides the overarching vision, goals, policies, and programs for the city and is implemented through city ordinances, regulations, and guidance documents. Policy support for this SRTS Plan includes:
Safe Routes to School Improvements for Bishop’s Peak & Pacheco Elementary Schools

The Land Use and Circulation Elements (2014) – General Plan Land Use and Circulation Elements (LUCE) calls for a network of pedestrian and bicycle facilities that promote connections to community facilities such as schools. The Circulation Element has a modal split objective of 20% for bicycles and 18% for walking, car pools, and other forms of non-single occupancy vehicular use. It also encourages the use of bicycles by students and staff travelling to local educational facilities and for the Bicycle Transportation Plan to consider SRTS.

Table 1: General Plan Circulation Element Modal Split Objectives

<table>
<thead>
<tr>
<th>Type of Transportation</th>
<th>% of City Resident Trips</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motor Vehicles</td>
<td>50%</td>
</tr>
<tr>
<td>Transit</td>
<td>12%</td>
</tr>
<tr>
<td>Bicycles</td>
<td>20%</td>
</tr>
<tr>
<td>Walking, Carpools, and other Forms</td>
<td>18%</td>
</tr>
</tbody>
</table>

Bicycle Transportation Plan (2013) – provides for the planning, development, and maintenance of facilities and activities within the city that are safe and convenient for bicyclists of all ability levels, laying out a network of proposed bikeways to connect the city for travel by bike with special emphasis on travel to schools. Within the study area of the SRTS Plan, the Bicycle Plan proposes a number of improvements including bicycle boulevards on Broad and Cerro Romauldo, bike lanes on Highland, as well as intersection enhancements on Foothill at Patricia, La Entrada, and Ferrini.

Broad Street Bicycle Boulevard – is a planning effort concurrent to this Safe Routes to School Plan with the aim to provide a safe and convenient through route for bicyclists and pedestrians between downtown San Luis Obispo and Foothill Boulevard. While it is separate from this effort, what it envisions is complementary to this plan to improve conditions for pedestrians and cyclists of all ages and ability levels from the downtown and North Broad Street neighborhoods to Pacheco and Bishop’s Peak Schools.

La Entrada and Ramona Neighborhood Traffic Management (NTM) Project – The neighborhoods of La Entrada and Ramona Streets are in the queue for the development of a Neighborhood Traffic Management (NTM) Improvement Plan. Utilizing engineering, education, and enforcement tools, the NTM program strives for equitable and effective solutions to issues affecting traffic safety and quality of life in the city’s neighborhoods and involves a high level of community participation and collaboration. Planning efforts for the La Entrada and Ramona NTM project is anticipated to begin in 2020 and will identify appropriate traffic calming improvements within these neighborhoods.

Vision Zero – The message of the Vision Zero initiative—adopted as policy by the San Luis Obispo City Council in 2016—is simple: one death on our city streets is too many. Rather than accepting traffic-related deaths as “accidents” and singularly faulting road users, the Vision Zero initiative places the core responsibility for traffic safety on proper street system design, enforcement and public education. The premise is that humans are fallible and will make mistakes—properly designed transportation systems can help minimize the consequences and severity of these mistakes when they occur. Through data-driven analysis, innovative street improvements, strategic traffic enforcement and education, the City of San Luis Obispo is committed towards a goal of zero traffic-related deaths or severe injuries by 2030.
III. Needs Assessment

In order to identify and prioritize potential transportation improvements, enforcement needs, and outreach strategies needed to improve conditions for walking and bicycling to school, a detailed Needs Assessment was conducted. The Needs Assessment efforts included community outreach activities to document concerns and issues identified by parents, school representatives and neighbors, as well as a detailed review of existing transportation conditions and data within the vicinity of Bishop’s Peak and Pacheco Elementary Schools.

Community Outreach

As part of the development of this plan, a multi-pronged community-based public engagement effort focused on understanding the needs and priorities of stakeholders and local residents.

A major component of community outreach consisted of a series of in-person meetings held at Pacheco School. During the first community meeting, neighbors and parents identified issues and areas where they have experienced challenges and desired analysis for possible improvements. Significant discussion focused on the need for crossing improvements of Foothill Boulevard and ways to make the crossing less challenging for pedestrians and bicyclists. Following staff analysis of the needs, the second community meeting featured a presentation of Draft Improvement Recommendations. This included transportation improvement project recommendations (physical improvements) and coordination and enforcement strategies among the schools, San Luis Coastal Unified School District (SLCUSD), and the city public works and police departments.

Other outreach efforts included an invitation to leave feedback on the project’s website (http://www.peakdemocracy.com/3736) and ongoing coordination with school representatives and SLCUSD staff.

Existing Conditions Review

To supplement the community outreach efforts of the Needs Assessment, staff conducted a detailed review of available transportation data and studies, and conducted in-person field observations to identify other mobility and safety needs and verify issues identified by the community.

Study Area Transportation System

To better understand the multimodal circulation system within the vicinity of the SRTS plan area, an inventory of study area roadways, bicycle facilities, sidewalks and intersection crossings was conducted. Figure 2 shows the Study Area Transportation System, including signalized crossing locations, existing and planned bicycle facilities within the vicinity of Bishop’s Peak and Pacheco Elementary Schools.

Traffic Volume & Speed Data

The City of San Luis Obispo conducts regular traffic counts at major intersections, roadway segments and bicycle/pedestrian trails as part of the City’s biennial traffic monitoring program. Traffic counts
capture auto, pedestrian and bicycle count data. The most recent traffic volume data set collected by the City is from 2016 and can be viewed on the City’s online traffic data map³.

City Transportation Staff collects traffic speed data regularly for the purposes of setting speed limits, investigating neighborhood traffic concerns and for studying traffic safety issues at various locations throughout the City. Current speed survey data for many city streets can be accessed via the city’s online traffic data map. As part of the SRTS Plan Needs Assessment phase, speed data was collected and reviewed to investigate concerns expressed by parents and neighbors about locations where high vehicle speeds created uncomfortable conditions for pedestrians and bicyclists traveling to school.

Collision History

As part of the City’s Traffic Safety Program, collision reports are collected from the San Luis Obispo Police Department and analyzed on an annual basis to identify collision trends throughout the City. The City’s Annual Traffic Safety Report⁴ documents citywide trends by collision type (total collisions, fatal/injury collisions, pedestrian & bicycle collisions) and identifies mitigation strategies for high-collision rate locations, with a focus on locations with high rates of collisions involving pedestrians, bicyclists and injuries. Potential mitigation recommendations may include physical improvements, as well as targeted education and enforcement strategies.

As part of the SRTS Needs Assessment, collision data from the previous 10 years was reviewed for intersections and streets within typical walking or biking distance from Bishop’s Peak and Pacheco Elementary Schools (0.25-0.5 miles). This assessment included a focused investigation of locations with a documented history of pedestrian or bicycle collisions to identify potential trends that could be addressed through SRTS improvement strategies. Collision history within the study area is summarized in Figure 2.

Field Observations

City Transportation Staff also conducted in-person field visits to observe existing conditions and better understand potential constraints to walking and biking to school. Staff walked the SRTS study area extensively to observe activity during school drop-off and pick-up times, and joined a group of parents and students for a bicycle tour following their typical routes to/from school. Through these field visits, staff observed locations missing accessible sidewalks or curb ramps, gaps in the bicycle network and locations where bicycle facilities do not provide a low-stress environment desired to serve users with less experience, such as elementary school-age children.

³ http://slocity.maps.arcgis.com/apps/OnePane/basicviewer/index.html?appid=f808ee341ad743259b9f7b455cd7b69b

Safe Routes to School Improvements for
Bishop’s Peak & Pacheco Elementary Schools

Prior Route to School Planning

SLO Regional Rideshare, a division of the San Luis Obispo Council of Governments (SLOCOG), serves as the central SRTS program coordinator for San Luis Obispo County. As part of previous SRTS activities, SLO Rideshare prepared SRTS infrastructure maps for Bishop’s Peak and Pacheco Schools, and administered a survey asking parents of local school children about SRTS topics. The survey asked parents to provide information about student travel patterns, issues affecting their decisions to allow or not allow their children to walk or bike to school, and types of infrastructure, education or outreach opportunities that may encourage them to allow their children to walk, bike or take the bus to school more often. SLO Rideshare generously shared their SRTS transportation maps and data from the 2014 surveys completed by parents of Bishop’s Peak and Pacheco Elementary School parents. The SLO Rideshare survey data and SRTS infrastructure maps were reviewed by city staff to confirm key transportation issues and concerns within the SRTS study area.

Primary Routes to School

Based on review of existing transportation conditions and input provided by parents and school representatives, primary suggested routes to school were identified for Bishop’s Peak and Pacheco Schools. These routes identify suggested paths for walking and/or biking to school that best utilize existing pedestrian and bicycle infrastructure, while attempting to avoid high-stress streets and intersection crossings. These suggested bicycling and walking paths also provide a reference for prioritizing needed transportation improvements for locations where they would provide the most benefit to walking and bicycling to school. Suggested Primary Routes to School are mapped in Figure 3 below.
Safe Routes to School Improvements for Bishop's Peak & Pacheco Elementary Schools

FIGURE 2

STUDY AREA TRANSPORTATION SYSTEM

LEGEND

Existing

Proposed

Class I Bike Path
Class II Bike Lanes
Bike Boulevard
Class III Bike Route (Sharrows)
Class III Bike Route
Traffic Signal
Stop-Control

Ped/Bike Collision History (2006-2015)
Safe Routes to School Improvements for Bishop's Peak & Pacheco Elementary Schools

FIGURE 3

SUGGESTED ROUTES TO SCHOOL

LEGEND
- Blue arrows: Primary Route to Bishop's Peak Elementary
- Green arrows: Primary Route to Pacheco Elementary
- Black arrows: Future Route w/ Class I Ped Bike Path per Project #3
Summary of Needs Assessment

Table 2 below summarizes the primary SRTS issues identified through the Needs Assessment phase. The location associated with each issue/concern is also identified in the map on Figure 4.

<table>
<thead>
<tr>
<th>#</th>
<th>Issue</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Foothill Crossing Enhancements (at Ferrini Rd.) – Pedestrian/bicycle</td>
<td>Pedestrian/bicycle crossing improvements needed at unsignalized intersection of Foothill Blvd. & Ferrini Rd. to improve safety and connectivity between the schools and neighborhoods south of Foothill Blvd.</td>
</tr>
<tr>
<td>2</td>
<td>Foothill Crossing Enhancements (at Patricia /La Entrada) – Crossing</td>
<td>Improvements needed at signalized intersection of Foothill Blvd. & Patricia Dr./La Entrada Ave., where current conditions are inconvenient for bicyclists to make a safe, legal crossing. Also consider sight distance issues at La Entrada approach to Foothill Blvd., high speeds of eastbound right-turning vehicles, and narrow sidewalk width along south side of Foothill Blvd. west of La Entrada, where walking bikes on the sidewalk can be difficult.</td>
</tr>
<tr>
<td>3</td>
<td>Ferrini Rd. & Felton Way Intersection – Intersection in close proximity</td>
<td>Intersection in close proximity to Pacheco Elementary and lacks curb ramps.</td>
</tr>
<tr>
<td>4</td>
<td>Ramona Dr. & Palomar Ave. Intersection – Improvements needed to</td>
<td>Enhance sight distance and safety crossing Ramona Dr. at Palomar Ave. In addition to accommodating students walking to school, the intersection is in the vicinity of a senior residential community, where vulnerable pedestrians would benefit from crossing enhancements.</td>
</tr>
<tr>
<td>5</td>
<td>Pacheco Elementary Bike Parking – Need more supply/better access to</td>
<td>to bike racks at the Pacheco Elementary campus. Consider potential for shared bike parking at Pacheco Elementary/Throop Park.</td>
</tr>
<tr>
<td>6</td>
<td>Santa Rosa St. (Hwy 1) & Highland Dr. Bike Lane – bike symbol at</td>
<td>Highland Dr. approach to Highway 1/Highland Dr. intersection is in wrong location and conflicts with right-turning cars.</td>
</tr>
<tr>
<td>7</td>
<td>Cerro Romauldo Ave. & Tassajara Dr. Intersection – It can be</td>
<td>difficult to see approaching vehicles and crossing pedestrians at this two-way stop-controlled intersection.</td>
</tr>
<tr>
<td>8</td>
<td>Highland Dr. & Patricia Dr. Intersection – Cars parked close to</td>
<td>intersection limit sight distance. Desire for crossing guard at Highland Dr./Patricia Dr. intersection during school drop-off/pickup times.</td>
</tr>
<tr>
<td>9</td>
<td>Highland Dr. & Cuesta St. Intersection – Cars parked close to</td>
<td>intersection limit sight distance.</td>
</tr>
<tr>
<td>10</td>
<td>Tassajara Dr. Sidewalks – Gaps in sidewalk along Tassajara Dr.</td>
<td>between Ramona Dr. and Luneta Dr.</td>
</tr>
<tr>
<td>11</td>
<td>Craig Way. Sidewalks – Gaps in sidewalk along Craig Way between</td>
<td>Jeffrey and Patricia.</td>
</tr>
<tr>
<td>12</td>
<td>Highland Dr. School Traffic – Congestion and erratic driving</td>
<td>behavior (i.e. double parking, U-turns where not permitted, etc.) along Highland Dr. west of Patricia Dr. near Bishop’s Peak Elementary northern entry during school drop-off/pickup times.</td>
</tr>
<tr>
<td>13</td>
<td>Pacheco Elementary School Traffic & Parking – Speeding along streets</td>
<td>Speeding along streets near Pacheco Elementary during school drop-off/pickup times (Ferrini Rd., Felton Way, Cerro Romauldo Ave., Cuesta Dr.). Also, parents often park illegally in the permit parking district across from the school instead of in the designated drop-off area. The designated drop-off area is often full, despite signs that prohibit parking there.</td>
</tr>
<tr>
<td>14</td>
<td>Foothill Blvd. Traffic Signal Compliance/Visibility – Concerns</td>
<td>Regarding red light running and glare at signalized intersections along Foothill Blvd. during mornings.</td>
</tr>
<tr>
<td>#</td>
<td>Issue</td>
<td></td>
</tr>
<tr>
<td>----</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Foothill Blvd. Bicycling Environment – Some parents do not feel comfortable riding with young ones in bike lanes along Foothill Blvd. and choose to illegally ride in sidewalk instead. Also, there are concerns regarding rough pavement surface within bike lanes along Foothill Blvd.</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Pacheco Elementary School Bus Circulation – School buses do not always comply with preferred route leaving Pacheco Elementary (via Highland Dr. to Highway 1), and instead drive through neighborhood streets such as Ferrini and Cerro Romauldo.</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Ferrini Rd. & Cerro Romauldo Intersection – Need for traffic calming at this intersection. Consider a roundabout/traffic circle to slow speeds and discourage school buses from using this route.</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Patricia Dr. & Craig Way Bicycle Facilities – Desire for enhanced bicycle facilities/treatments along Patricia Dr. north of Foothill Blvd. and along Craig Way accessing the Bishop’s Peak Elementary School campus.</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Highland Dr. & Jeffrey Dr. Intersection – Intersection lacks curb ramps at two corners.</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Bishop’s Peak Bike Parking – Need to improve bike parking at southern entrance (Jaycee Dr.) and northern entrance (Highland Dr.). Current racks are less-than-ideal.</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>La Entrada Dr. & Ramona Dr. Intersection – Intersection lacks curb ramps.</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>La Entrada Dr. & Del Norte Way Intersection – Intersection lacks curb ramps.</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Ramona Dr. Bicycling Environment – Traffic volumes and speeds along Ramona Dr. create an uncomfortable bicycling environment for families with young children. Traffic calming is needed along this street.</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Traffic Enforcement – Need focused traffic enforcement within the neighborhood, particularly along Patricia Dr., Highland Dr. and at the Highland Dr./Chorro St. intersection where drivers illegally go around the median.</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Throop Parking Lighting – The parking lot lighting at Throop Park is very dim at night, creating an unsafe feeling.</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>Highland Dr. Striping – Recommend adding a centerline stripe to Highland Dr. between Patricia Dr. and Chorro St. to encourage drivers to stay in the proper lanes and slow traffic.</td>
<td></td>
</tr>
</tbody>
</table>
Safe Routes to School Improvements for Bishop's Peak & Pacheco Elementary Schools

FIGURE 4
TRANSPORTATION NEEDS ASSESSMENT MAP
IV. Recommendations

As stated earlier in this Plan, an effective SRTS program includes the 5 E’s—Engineering, Education, Enforcement, Encouragement, and Evaluation—all working together. This Plan for Pacheco and Bishop’s Peak schools includes a coordinated effort to identify and prioritize needed transportation improvements as well as integrate activities in education, enforcement, encouragement programs, and evaluation to measure progress. To address the issues and concerns identified in the Needs Assessment phase (summarized previously in Table 2), specific recommendations were developed and organized into the following two categories:

- **Transportation Improvement Projects**
 - Physical Improvements

- **Coordination, Enforcement & Education Strategies**
 - On-campus improvements outside of City jurisdiction
 - Issues not addressed by off-campus physical improvements
 - Issues best addressed through targeted traffic enforcement, education and outreach activities

Transportation Improvement Project Recommendations

Transportation improvement projects include infrastructure improvements to improve the safety and functionality of pedestrian and bicycle facilities within the SRTS study area. Table 3 below summarizes the 19 transportation improvement project recommendations, which are listed in the order they were raised in the community Needs Assessment phase. Project locations are shown in Figure 5.

<table>
<thead>
<tr>
<th>#</th>
<th>Project</th>
<th>Fact Sheet Page # (Appendix A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Foothill Blvd. & Ferrini Rd. Crossing Enhancement: Install enhanced pedestrian/bicycle crossing at Foothill/Ferrini intersection, including a Pedestrian Hybrid Beacon (a.k.a. “HAWK”), high-visibility crossing markings and signage.</td>
<td>A-1</td>
</tr>
<tr>
<td>2</td>
<td>Foothill Blvd. & Patricia Dr./La Entrada Ave. Crossing Enhancement: Signalize the La Entrada street approach at Foothill and operate Foothill/Patricia/La Entrada as a single signalized intersection with dedicated signal phases for vehicles/bicyclists and pedestrians crossing Foothill.</td>
<td>A-3</td>
</tr>
<tr>
<td>3</td>
<td>Ramona Dr. to Foothill Blvd. Class I Path: Construct Class I Bicycle/Pedestrian Path along eastern portion of LDS Church property to provide low-stress connection between Ramona Drive at Foothill. This connection will link the Broad St. Bike Boulevard and proposed Foothill/Ferrini enhanced crossing. (Requires agreement with LDS Church for potential easement or right-of-way acquisition)</td>
<td>A-5</td>
</tr>
<tr>
<td>4</td>
<td>Foothill Blvd. Bicycle Improvements: Investigate feasibility of bicycle facility improvements along Foothill between Patricia and Santa Rosa. Potential improvements to be considered include buffered bike lanes, protected bikeways (“Cycle Tracks”), and intersection/conflict zone enhancements such as green markings, bike boxes and bike signals.</td>
<td>A-7</td>
</tr>
<tr>
<td>5</td>
<td>Ferrini Rd. & Felton Way Curb Ramps: Construct ADA curb ramps.</td>
<td>A-8</td>
</tr>
</tbody>
</table>
Safe Routes to School Improvements for Bishop’s Peak & Pacheco Elementary Schools

<table>
<thead>
<tr>
<th>#</th>
<th>Project</th>
<th>Fact Sheet Page # (Appendix A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Ramona Dr. & Palomar Ave. Crossing Enhancements: Extend on-street parking restrictions on north side of Ramona to improve sight distance at pedestrian crossing. Phase 2 – Improve visibility of crossing and calm traffic by constructing sidewalk bulbout and raised crosswalk/speed table.</td>
<td>A-9</td>
</tr>
<tr>
<td>7</td>
<td>Cerro Romauldo Ave. & Ferrini Rd. Intersection Improvements: Construct raised intersection, where street is flush with sidewalks.</td>
<td>A-11</td>
</tr>
<tr>
<td>8</td>
<td>Highland Dr. & Highway 1 Bicycle Improvements: Convert the eastbound shared through/right-turn lane to a dedicated right-turn lane. Restripe eastbound & westbound Highland approaches to include a bike slot between the right-turn lane and through lane.</td>
<td>A-13</td>
</tr>
<tr>
<td>9</td>
<td>Cerro Romauldo Ave. & Tassajara Dr. Intersection Improvements: Investigate feasibility of neighborhood traffic circle.</td>
<td>A-15</td>
</tr>
<tr>
<td>10</td>
<td>Highland Dr. & Cuesta Dr. Intersection Improvements: Modify intersection striping, install red curb parking restrictions ultimately reconstruct corner to tighten turning radius.</td>
<td>A-16</td>
</tr>
<tr>
<td>11</td>
<td>S. Tassajara Dr. Sidewalk Improvements: Work with property owners to construct sidewalks on west side of Tassajara between Ramona and Luneta.</td>
<td>A-18</td>
</tr>
<tr>
<td>12</td>
<td>Craig Way Sidewalk Improvements: Work with property owners to construct sidewalks on north or south side of Craig between Jeffrey and Patricia.</td>
<td>A-19</td>
</tr>
<tr>
<td>13</td>
<td>Patricia Dr. & Craig Way Bicycle Facilities: Install sharrows & “Bike May Use Full Lane” signs along Patricia north of Foothill and along Craig approaching Bishop’s Peak School</td>
<td>A-20</td>
</tr>
<tr>
<td>14</td>
<td>Highland Dr. & Jeffrey Way Curb Ramps: Construct ADA curb ramps.</td>
<td>A-21</td>
</tr>
<tr>
<td>15</td>
<td>La Entrada Ave. & Del Norte Way & Ramona Dr. Curb Ramps: Construct ADA curb ramps.</td>
<td>A-22</td>
</tr>
<tr>
<td>16</td>
<td>Ramona/La Entrada Traffic Calming: Pursue speed reduction measures, which may include neighborhood traffic circles, speed humps/tables, bulbouts or other measures.</td>
<td>A-23</td>
</tr>
<tr>
<td>17</td>
<td>Highland Dr. Striping Improvements: Add centerline stripe and sharrow markings along Highland Dr. [COMPLETED 2016]</td>
<td>A-24</td>
</tr>
<tr>
<td>18</td>
<td>Patricia Dr. & Fel Mar Dr. Curb Ramps: Construct ADA curb ramps.</td>
<td>A-25</td>
</tr>
<tr>
<td>19</td>
<td>Foothill/Patricia & Foothill/Broad/Chorro Pedestrian Signal Enhancements: Upgrade pedestrian crossing signals to include countdown timers and talking pushbuttons.</td>
<td>A-26</td>
</tr>
</tbody>
</table>

Detailed fact sheets for each project, which include concept drawings, planning-level cost estimates and implementation strategies, are provided in Appendix A. A comprehensive summary of traffic data and technical analysis utilized to (a) investigate transportation issues identified in the SRTS Needs Assessment, and (b) evaluate the feasibility and effectiveness of potential improvement options to address these issues, is included in Appendix B.

Project prioritization and implementation strategies are discussed in the “Implementation Strategies” section of this report.
Safe Routes to School Improvements for Bishop’s Peak & Pacheco Elementary Schools

Transportation Improvement Projects
1. Foothill Blvd. & Ferrini Rd. Crossing Enhancement
2. Foothill Blvd. & Patricia/La Entrada Crossing Enhancement
3. Ramona Dr. & Foothill Blvd. Class I Path
4. Foothill Blvd. Bicycle Improvements
5. Ferri Rd. & Fel Mar Way Curb Ramps
6. Ramona Dr. & Palomar Ave. Crossing Enhancements
7. Cerro Romauldo Ave. & Ferrini Rd. Intersection Improvements
8. Highland Dr. & Highway 1 Bicycle Improvements
9. Cerro Romauldo Ave. & Tassajara Dr. Intersection Improvements
10. Highland Dr. & Cuesta Intersection Improvements
11. S. Tassajara Dr. Sidewalk Improvements
12. Craig Way Sidewalk Improvements
13. Patricia Dr. & Craig Way Bicycle Facilities
14. Highland Dr. & Jeffrey Way Curb Ramps
15. La Entrada Ave. & Del Norte Way & Ramona Dr. Curb Ramps
16. Ramona/La Entrada Traffic Calming
17. Highland Dr. Striping Improvements
18. Patricia Dr. & Fel Mar Dr. Curb Ramps
19. Foothill/Patricia & Foothill/Broad/Chorro Ped. Signal Enhancements

Coordination, Enforcement & Education Strategies
1. Pacheco Elementary Bike Parking
2. Bishop’s Peak Elementary School Traffic
3. Pacheco Elementary School Traffic & Parking
4. Pacheco Elementary School Bus Circulation
5. Bishop’s Peak Elementary Bike Parking
6. School District Wellness Policy

*See Table 2 for details

FIGURE 5

TRANSPORTATION IMPROVEMENT PROJECT RECOMMENDATIONS
Several key transportation improvement projects are highlighted below:

Foothill Blvd. & Ferrini Rd. Crossing Enhancement (Project #1)

This project is aimed at improving connectivity and comfort for users crossing Foothill Boulevard. High vehicle speeds/volumes on Foothill and lack of marked crossings and traffic control create a significant barrier for pedestrians and bicyclists traveling from the neighborhoods south of Foothill to the schools north of Foothill. Proposed improvements feature crossing enhancements at the intersection of Foothill and Ferrini, including addition of high visibility crossing markings, signage and installation of a Pedestrian Hybrid Beacon (a.k.a. “HAWK”). Where warrants prevent the installation of standard traffic signals, the Pedestrian Hybrid Beacon provides an alternative that provides a controlled crossing phase for pedestrians and bicyclists, but stops road traffic only as needed.

![Diagram of Potential Pedestrian Hybrid Beacon (HAWK) at Foothill & Ferrini](image)

<table>
<thead>
<tr>
<th>Interval</th>
<th>Motor Vehicle</th>
<th>Bicyclist</th>
<th>Pedestrian</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>8</td>
<td>Alternating Flashing Red</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sequencing of Pedestrian Hybrid Beacon for Drivers, Pedestrians and Bicyclists
This project is intended to address the challenging configuration of the Foothill/Patricia-La Entrada intersection, where sidewalks are constrained and crossing is difficult for bicycles and pedestrians, and drivers experience sight distance limitations when exiting La Entrada. The improvements will modify the traffic signal at Patricia to include La Entrada so that both intersections function as a single signalized intersection, which helps with sight distance limitations, reduces conflicts with turning movements, and improves the crossing for students walking and bicycling to school.
Ramona Dr. to Foothill Blvd. Class I Path (Project #3)

This project is aimed at addressing the uncomfortable walking and bicycling environment along Ramona Drive and Foothill Boulevard due to high traffic volumes and/or speeds. Limited bicycle accommodations at the Foothill/Broad intersection and lack of other controlled crossing along Foothill Boulevard further impact connectivity between the neighborhoods north and south of Foothill. The proposed improvements include construction of a Class I Bicycle and Pedestrian Path along the eastern edge of the Church of Jesus Christ of Latter-Day Saints (LDS) property between Ramona and Foothill. This will provide a low-volume and low-stress alternative to Broad and Foothill. The pathway is related to Project #1 in that it will lead up to the crossing treatments along Foothill at Ferrini. The project will also benefit from connectivity to the planned Broad Street Bicycle Boulevard in providing a connection for bicycling and walking to areas further south of Foothill Blvd, including downtown.

It should be noted that implementation of this project would require an agreement between the City and LDS Church for an access easement or right-of-way acquisition
Foothill Blvd. Bicycle Improvements (Project #4)

Although Foothill Blvd is one of the most heavily used bicycle corridors in the City, high traffic volumes/speeds create an uncomfortable walking and bicycling environment for less-experienced cyclists. Less experienced riders and parents with school-age children can feel uncomfortable riding in bike lanes adjacent to high-speed traffic, and often ride illegally in the sidewalk instead. This project recommends a focused study to evaluate the feasibility of bicycle facility improvements along the Foothill corridor from Patricia to Santa Rosa (Highway 1). Potential types of improvements to be considered include buffered bike lanes, protected bikeways (“cycle tracks”), and intersection crossing improvements such as green markings through conflict areas, bike boxes and bicycle signals. Because some of these features potentially require significant modifications to the roadway configuration of Foothill Boulevard, a detailed analysis is required to analyze potential traffic operations impacts, benefits and costs associated with various improvements. Specific design recommendations can be refined in conjunction with planned updates to the City’s Bicycle Transportation Plan and could be implemented as a stand-alone Capital Improvement Project or in conjunction with future roadway resurfacing projects (ETA for Pavement Zone #7 ~ 2021/22).
Safe Routes to School Improvements for
Bishop’s Peak & Pacheco Elementary Schools

Ramona Dr. & Palomar Ave. Crossing Improvements (Project #6)

This project addresses concerns regarding crossing sight distance and safety along Ramona Drive at Palomar. This intersection is in the vicinity of a senior residential community and student housing, and a SLO Transit bus stop and would be expected to experience additional crossing demand with the potential implementation of the Class I Pedestrian/Bicycle Path in Project #3. Improvements include crossing enhancements to improve safety and comfort for bicycles and pedestrians crossing Ramona at Palomar. The first phase would include low-cost treatments, such as extension of on-street parking restrictions on the north side of Ramona to improve sight distance, and potential markings and paint to reduce the effective roadway width at the crossing. The second phase will include higher-cost, permanent treatments to improve crossing visibility and calm traffic by construction, including concrete sidewalk bulbouts and a raised crosswalk or speed table.
Coordination, Enforcement & Education Recommendations

Several of the key issues and concerns identified by the community in the Needs Assessment phase are items that are best addressed through strategies other than city-initiated transportation improvement projects. In many cases, issues relating to erratic/unsafe travel behavior, speeding, and parking concerns are best addressed through targeted traffic enforcement by local police and focused community education and outreach strategies. Similarly, requests for improved multimodal connections or facilities within the Bishop’s Peak or Pacheco Elementary campuses would need to be addressed by school representatives and/or SLCUSD, as these facilities are outside of the jurisdiction of City Public Works.

As shown in the Needs Assessment summary (see Table 2), the most common community concerns that would be best addressed through enforcement, coordination and education strategies relate to a desire for increased traffic and parking enforcement during school drop-off and pickup times, improved on-campus bicycle parking facilities and improved multimodal access to campus, particularly at Bishop’s Peak Elementary. Table 4 below summarizes the key coordination, enforcement and education recommendations presented in this SRTS Plan, listed in no specific order.

Table 4: Coordination & Enforcement Recommendations

<table>
<thead>
<tr>
<th>#</th>
<th>Project</th>
<th>Fact Sheet Page # (Appendix A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Pacheco Elementary Bike Parking: Identify additional locations for bicycle racks at the Pacheco Elementary campus. (SLCUSD)</td>
<td>A-27</td>
</tr>
<tr>
<td>2</td>
<td>Bishop’s Peak Elementary School Traffic:</td>
<td>A-28</td>
</tr>
<tr>
<td></td>
<td>• Implement SLCUSD’s planned access improvements to the Bishop’s Peak Elementary School campus. Improvements anticipated to include modifications to Jaycee Dr. along the school frontage to improve ingress/egress during school drop-off and pickup times, as well as relocation and upgrades of bicycle racks to improve access to bicycle parking. (SLCUSD)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Distribute informational material to parents regarding appropriate student drop-off/pickup procedures. (SLCUSD, Bishop’s Peak School)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Coordinate targeted traffic enforcement efforts along Highland Dr. and Patricia Dr. to reduce erratic driving behavior during school times. (SLO PD)</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Pacheco Elementary School Traffic & Parking:</td>
<td>A-29</td>
</tr>
<tr>
<td></td>
<td>• Distribute informational material to parents regarding appropriate student drop-off/pickup procedures. (SLCUSD, Pacheco School)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Coordinate targeted traffic and parking enforcement efforts along Ferrini Rd. to reduce erratic driving behavior during school times. (SLO PD)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Pursue traffic calming improvements within the vicinity of Pacheco Elementary as part of the planned Cerro Romauldo Bicycle Boulevard Project. (City PW)</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Pacheco Elementary School Bus Circulation: Evaluate feasibility of restricting all school bus routes from exiting Pacheco Elementary to Foothill Blvd. via neighborhood streets such as Ferrini Rd. and Cerro Romauldo Ave. (SLCUSD)</td>
<td>A-30</td>
</tr>
<tr>
<td>5</td>
<td>Bishop’s Peak Elementary Bike Parking: Identify potential bicycle parking access and equipment improvements at the Bishop’s Peak Elementary campus. Pursue these improvements as part of the planned campus access & facilities modifications. (SLCUSD)</td>
<td>A-31</td>
</tr>
</tbody>
</table>
Safe Routes to School Improvements for Bishop’s Peak & Pacheco Elementary Schools

<table>
<thead>
<tr>
<th>#</th>
<th>Project (Responsible Agency/Party in Italics)</th>
<th>Fact Sheet Page # (Appendix A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>School District Wellness Policy: Draft and adopt formal wellness policy at a district-wide level that specifically promotes bicycling and walking to school. Such an addition improves the competitiveness of future grant applications through SLOCOG’s Safe Routes to School funding program. (SLCUSD)</td>
<td>A-32</td>
</tr>
</tbody>
</table>

While not identified as a specific need in the community meetings, educational and encouragement efforts will work in tandem with improvements in infrastructure and enforcement. These efforts include coordinated Bike and Walk to School Days throughout the year and efforts by SLO Regional Rideshare and the SLO County Public Health Department to bring bike safety assemblies and bike rodeos. These events encourage kids to bike and walk and teach traffic safety as well as handy bike skills.

A detailed fact sheet describing each recommendation included in Appendix A, pages A-27 through A-32.

Plan Evaluation

In evaluating the Safe Routes to School Plan, the City will coordinate with SLCUSD in documenting the number of students who bike and walk to school. In addition, the City will be monitoring collision rates around the schools as part of its Annual Traffic Safety Report as well as pedestrian and bicycle counts in its annual traffic survey.

Implementation Strategies

Projects are prioritized based on several factors including the safety and comfort benefits of each project relative to costs, the desire for each improvement based on the community input, and whether a project was stand alone or could be incorporated into existing programs. Planning-level cost estimates were developed for the transportation improvement projects identified previously in Table 3.
Safe Routes to School Improvements for Bishop’s Peak & Pacheco Elementary Schools

While preliminary in nature, these cost estimates provide a basis for incorporating these recommendations into future City Capital Improvement Programs, and provide a valuable tool to assist city staff in pursuing SRTS grant funding opportunities.

Transportation improvement project prioritization and planning-level cost estimates are summarized in Table 5 below.

Table 5: Transportation Improvement Project Prioritization & Cost

<table>
<thead>
<tr>
<th>Draft Priority #</th>
<th>Project Description</th>
<th>Project ID</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Foothill Blvd. & Ferrini Rd. Crossing Enhancement</td>
<td>1</td>
<td>$295,000</td>
</tr>
<tr>
<td>2</td>
<td>Ramona Dr. to Foothill Blvd. Class I Path</td>
<td>3</td>
<td>$143,000 – $514,000</td>
</tr>
<tr>
<td>3</td>
<td>Foothill Blvd. & Patricia Dr./La Entrada Ave. Crossing Enhancements</td>
<td>2</td>
<td>$230,000</td>
</tr>
<tr>
<td>4</td>
<td>Highland Dr. & Cuesta Dr. Intersection Improvements</td>
<td>10</td>
<td>$10,000 – $20,000</td>
</tr>
<tr>
<td>5</td>
<td>Ramona Dr. & Palomar Ave. Crossing Enhancements</td>
<td>6</td>
<td>$1,000 (Phase 1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$53,000 (Phase 2)</td>
</tr>
<tr>
<td>6</td>
<td>Cerro Romauldo Ave. & Ferrini Rd. Intersection Improvements</td>
<td>7</td>
<td>$240,000</td>
</tr>
<tr>
<td>7</td>
<td>Patricia Dr. & Craig Way Bicycle Facilities</td>
<td>13</td>
<td>$5,000</td>
</tr>
<tr>
<td>8</td>
<td>Foothill/Patricia & Foothill/Broad/Chorro Pedestrian Signal Enhancements</td>
<td>19</td>
<td>$135,000</td>
</tr>
<tr>
<td>9</td>
<td>Highland Dr. & Highway 1 Bicycle Improvements</td>
<td>8</td>
<td>$47,000</td>
</tr>
<tr>
<td>10</td>
<td>S. Tassajara Dr. Sidewalk Improvements</td>
<td>11</td>
<td>$54,000</td>
</tr>
<tr>
<td>11</td>
<td>Craig Way Sidewalk Improvements</td>
<td>12</td>
<td>$49,000</td>
</tr>
<tr>
<td>Other*</td>
<td>Foothill Blvd. Bicycle Improvements</td>
<td>4</td>
<td>TBD</td>
</tr>
<tr>
<td>Other*</td>
<td>Ferrini Rd. & Felton Way Curb Ramps</td>
<td>5</td>
<td>$39,000</td>
</tr>
<tr>
<td>Other*</td>
<td>Cerro Romauldo Ave. & Tassajara Dr. Intersection Improvements</td>
<td>9</td>
<td>$20,000 - $50,000</td>
</tr>
<tr>
<td>Other*</td>
<td>Highland Dr. & Jeffrey Way Curb Ramps</td>
<td>14</td>
<td>$52,000</td>
</tr>
<tr>
<td>Other*</td>
<td>La Entrada Ave. & Del Norte Way & Ramona Dr. Curb Ramps</td>
<td>15</td>
<td>$98,000</td>
</tr>
<tr>
<td>Other*</td>
<td>Ramona/La Entrada Traffic Calming</td>
<td>16</td>
<td>TBD</td>
</tr>
<tr>
<td>Other*</td>
<td>Patricia Dr. & Fel Mar Dr. Curb Ramps</td>
<td>18</td>
<td>$30,000</td>
</tr>
<tr>
<td>Complete</td>
<td>Highland Dr. Striping Improvements: [COMPLETED 2016]</td>
<td>17</td>
<td>N/A</td>
</tr>
</tbody>
</table>

*Not assigned a priority for the purposes of this plan, as these projects can be best implemented as part of other ongoing City programs (Neighborhood Traffic Management, Pavement Resurfacing, Community Development Block Grant for curb ramps, etc.) or as part of private development projects.
Appendix

A – Project Fact Sheets
B – Traffic Data and Analysis
C – Adopting Resolution
A – Project Fact Sheets
Transportation Improvement Project #1

Addresses Needs Assessment Issue #:

#1

Estimated Cost:

$295,000

Priority:

#1 (High Priority)

Foothill Blvd. & Ferrini Rd. Crossing Enhancement

Access/Safety Issue Identified by Community:

High vehicles speeds/volumes on Foothill Blvd. and lack of marked crossing and traffic control create a barrier for pedestrians and bicyclists attempting to cross Foothill Blvd. at the unsignalized intersection with Ferrini Rd. Crossing enhancements are needed to improve safety and connectivity between the schools and neighborhoods south of Foothill Blvd.

Recommended Project Description:

Install an enhanced bicycle/pedestrian crossing at the Foothill Blvd./Ferrini Rd. intersection, including a Pedestrian Hybrid Beacon (a.k.a. “HAWK”) and high-visibility crossing markings and signage.

Notes:

See conceptual designs on following page.
SAFE ROUTES TO SCHOOL IMPROVEMENTS FOR BISHOP'S PEAK & PACHECO ELEMENTARY SCHOOLS

Concept for Foothill & Ferrini Crossing Improvements

- Enhanced pedestrian/bicycle crossing with hybrid beacon ("Hawk") signal and high-visibility markings/signage (See detail A & B)
- Yield line set 50' back from crossing
- Sidewalk bulbout shortens Foothill crossing distance. Widened sidewalk (12') serves as shared bicycle/pedestrian path through crossing area.
- Crossing signal activated by pedestrian push button and/or bicycle loop detection
- Push button for bicyclists
- Relocate existing bus stop 150' to the east
- Fotheill Plaza service drive
- Proposed path through Church Field

(See detail A - Hawk signal operations and detail B - signal indications)
Transportation Improvement Project #2

<table>
<thead>
<tr>
<th>Addresses Needs Assessment Issue #</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estimated Cost</td>
<td>$230,000</td>
</tr>
<tr>
<td>Priority</td>
<td>#3 (High Priority)</td>
</tr>
</tbody>
</table>

Foothill Blvd. & Patricia Dr./La Entrada Ave. Crossing Enhancement

Access/Safety Issue Identified by Community:
The offset configuration of the Foothill Blvd./Patricia Dr./La Entrada Ave. intersection and narrow sidewalks make it difficult for bicyclists to make a safe, legal crossing of Foothill Blvd. In addition, sight distance constraints and high turning speeds at the Foothill Blvd./La Entrada Ave. intersection add to the uncomfortable crossing environment for bicycles and pedestrians.

Recommended Project Description:
Modify the traffic signal at Foothill & Patricia to include signalization of the offset La Entrada street approach. With these improvements, Foothill/Patricia/La Entrada would function as a single signalized intersection, with dedicated signal phases for vehicles/bicycles and pedestrians crossing Foothill Boulevard from Patricia and La Entrada.

Notes:
See conceptual designs on following page.

Implementation Strategy:
Can be implemented as City Capital Improvement Project.
SAFE ROUTES TO SCHOOL IMPROVEMENTS FOR BISHOP’S PEAK & PACHECO ELEMENTARY SCHOOLS

COORDINATE WITH PROPERTY OWNER TO REALIGN PRIVATE DRIVEWAY TO ALLOW AREA FOR CROSSWALK LANDING WITH ADA CURB RAMP

TRAFFIC SIGNAL PROVIDES SIGNALIZED CROSSING OPPORTUNITY FOR PEDESTRIANS AND BICYCLISTS AT FOOTHILL/LA ENTRADA

INSTALL TRAFFIC SIGNAL AT FOOTHILL/LA ENTRADA. OPERATE FOOTHILL/PATRICIA/LA ENTRADA SIGNAL AS SINGLE INTERSECTION TO OPTIMIZE TRAFFIC PROGRESSION.

LOOP DETECTION FOR BICYCLISTS

COORDINATE WITH PROPERTY OWNER TO REALIGN PRIVATE DRIVEWAY TO ALLOW AREA FOR CROSSWALK LANDING WITH ADA CURB RAMP

TRAFFIC SIGNAL PROVIDES SIGNALIZED CROSSING OPPORTUNITY FOR PEDESTRIANS AND BICYCLISTS AT FOOTHILL/LA ENTRADA

LOOP DETECTION FOR BICYCLISTS
Transportation Improvement Project #3

Addresses Needs Assessment Issue #:
#1, 15, 23

Estimated Cost:
$143,000-$514,000

Priority:
#2 (High Priority)

Ramona Dr. to Foothill Blvd. Class I Path

Access/Safety Issue Identified by Community:
High traffic volumes/speeds create an uncomfortable walking and bicycling environment along Ramona Dr. and Foothill Blvd. Limited bicycle accommodations at the Foothill Blvd./Broad St. intersection, and lack of other controlled crossings along Foothill Blvd. further impact connectivity between the neighborhoods north and south of Foothill Blvd.

Recommended Project Description:
Pursue construction of a Class I bicycle/pedestrian path along the eastern edge of the Church of Jesus Christ of Latter Day Saints property to provide a low-stress north-south connection between Ramona Dr. and Foothill Blvd. This connection would provide a link between the planned Broad St. Bicycle Boulevard and the proposed enhanced crossing at Foothill Blvd./Ferrini Rd. (see Transportation Improvement Project #1).

Notes:
Project requires agreement between City and LDS Church for access easement or right-of-way acquisition. See conceptual designs on following page.

Implementation Strategy:
Can be implemented as City Capital Improvement Project, pending agreement with LDS Church representatives.
The Church of Jesus Christ of Latter-Day Saints

Proposed Class I Bicycle/Pedestrian Path

Planned Bicycle/Pedestrian Crossing at Foothill & Ferrini Intersection as part of Safe Routes to School Project

Widened Sidewalk provides linkage between Class I Bicycle/Pedestrian Path and Planned Foothill/Ferrini Crossing

Potential Two-Way Protected Bikeway ("Cycle Track") along Ramona Drive as part of Broad Street Bicycle Boulevard

Planned Broad Street Bicycle Boulevard provides key north-south connection between Downtown and Foothill Corridor

TYPICAL CROSS SECTION FOR CLASS I BICYCLE/PEDESTRIAN PATH
Safe Routes to School Improvements for Bishop’s Peak & Pacheco Elementary Schools

Transportation Improvement Project #4

Addresses Needs Assessment Issue #:
#15

Estimated Cost:
TBD

Priority:
N/A - Requires further study. To be implemented as part of other program.

Foothill Blvd. Bicycle Improvements

Access/Safety Issue Identified by Community:
Although Foothill Blvd is one of the most heavily used bicycle corridors in the City, high traffic volumes/speeds create an uncomfortable walking and bicycling environment for less-experienced cyclists. Less experienced riders and parents with school-age children can feel uncomfortable riding in bike lanes adjacent to high-speed traffic, and often ride illegally in the sidewalk instead.

Recommended Project Description:
Investigate the feasibility of bicycle facility improvements along the Foothill Blvd. corridor from Patricia Dr. to Santa Rosa (Highway 1). Potential types of improvements to be considered include buffered bike lanes, protected bikeways (“cycle tracks”), and intersection crossing improvements such as green markings through conflict areas, bike boxes and bicycle signals.

Notes:
N/A

Implementation Strategy:
Further evaluation is required to study the feasibility and costs of specific design features. Specific design recommendations can be refined in conjunction with planned updates to the City’s Bicycle Transportation Plan and could be implemented as a stand-alone Capital Improvement Project or in conjunction with future roadway resurfacing projects (ETA for Pavement Zone #7 ~ 2021/22).
Ferrini Rd. & Felton Way Curb Ramps

Access/Safety Issue Identified by Community:
Intersection in close proximity to Pacheco Elementary and lacks accessible curb ramps.

Recommended Project Description:
Construct ADA curb ramps.

Notes:
N/A

Implementation Strategy:
Can be implemented as part of City Community Development Block Grant (CDBG) Program for curb ramp improvements.

<table>
<thead>
<tr>
<th>Address Needs Assessment Issue #</th>
<th>Estimated Cost</th>
<th>Priority</th>
</tr>
</thead>
<tbody>
<tr>
<td>#3</td>
<td>$39,000</td>
<td>N/A - To be implemented as part of other program.</td>
</tr>
</tbody>
</table>
Transportation Improvement Project #6

Addresses Needs Assessment Issue #:
#4, 23

Estimated Cost:
$1,000 (Phase 1)
$53,000 (Phase 2)

Priority:
#5 (Medium Priority)

Ramona Dr. & Palomar Ave. Crossing Improvements

Access/Safety Issue Identified by Community:
Improvements needed to enhance sight distance and safety crossing Ramona Dr. at Palomar Ave. In addition to accommodating students walking to school, the intersection is in the vicinity of a senior residential community (The Villages), where vulnerable pedestrians would benefit from crossing enhancements.

Recommended Project Description:
Phase 1: Improve visibility at crossing by extending on-street parking restrictions along north side of Ramona Dr.
Phase 2: Improve visibility of crossing and calm traffic along Ramona Dr. by constructing sidewalk bulbout and raised crosswalk/speed table. Explore relocation of private driveway at southeast corner of intersection.

Notes:
See conceptual designs on following page.

Implementation Strategy:
Phase 1 to be implemented by City Streets Maintenance Crew. Phase 2 improvements refined and implement as part of planned La Entrada/Ramona Neighborhood Traffic Management Project (ETA ~ 2019/20).
PHASE 1: EXPAND PARKING RESTRICTIONS AT CROSSING

IMPROVE SIGHT LINES AT CROSSING BY EXTENDING RED CURB ZONE. RESULTS IN LOSS OF APPROXIMATELY 7-8 ON-STREET SPACES

SIGHT TRIANGLES FOR 25 MPH STOPPING SIGHT DISTANCE

PHASE 2: CONSTRUCT SIDEWALK BULBOUT & RAISED CROSSWALK

IMPROVE SIGHT LINES AT CROSSING BY CONSTRUCTING SIDEWALK BULBOUT AND RAISED CROSSWALK WITH HIGH-VISIBILITY MARKINGS. RESULTS IN LOSS OF APPROXIMATELY 3-4 ON-STREET SPACES

POTENTIAL FOR GREEN STREET ELEMENTS WITHIN BULBOUT

SIGHT TRIANGLES FOR 25 MPH STOPPING SIGHT DISTANCE

EXPLORE REDUCING CORNER RADIUS TO SLOW SPEEDS FOR RIGHT-TURNING VEHICLES

BUS STOP FOR SLO TRANSIT ROUTES 4A,6

COORDINATE WITH PROPERTY OWNER TO RELOCATE PARKING LOT DRIVEWAY FROM RAMONA TO PALOMAR
Addresses Needs
Assessment Issue #:
#13, 17

Estimated Cost:
$240,000

Priority:
#6 (Medium Priority)

Access/Safety Issue Identified by Community:
Improvements are needed at the Cerro Romauldo Ave./Ferrini Rd. intersection to reduce speeding and discourage school buses from using Cerro Romauldo and Ferrini to access Pacheco Elementary from Foothill Blvd.

Recommended Project Description:
Reconstruct as raised intersection, where the roadway is flush with the sidewalk level. Similar to other vertical elements, such as speed humps and raised crosswalks, this treatment provides speed reduction and safety benefits. Bollards are installed along sidewalk to prevent vehicles from encroaching on intersection corners. Other options that may be explored include construction of corner bulbouts or installation of a neighborhood traffic circle.

Notes:
See conceptual designs on following page.

Implementation Strategy:
Refine potential improvements and implement as part of planned Cerro Romauldo Bicycle Boulevard Project (ETA TBD).
BOLLARDS ALONG CORNERS KEEP MOTORISTS FROM CROSSING INTO THE PEDESTRIAN SPACE.

INTERSECTION RAISED FLUSH WITH SIDEWALK LEVEL. LIKE SPEED HUMPS OR OTHER VERTICAL ELEMENTS, THIS TREATMENT PROVIDES SPEED REDUCTION BENEFITS.
Transportation Improvement Project #8

Highland Dr. & Highway 1 Bicycle Improvements

Access/Safety Issue Identified by Community:
The bike lane (and bike loop detector) at the eastbound approach to the Highland Dr./Highway 1 intersection is positioned so that right-turning vehicles conflict with bicycles traveling eastbound to Cal Poly. At the westbound intersection approach, the bike lane is located along the curb side, which is not the current design standard for an intersection approach with a dedicated right-turn only lane.

Recommended Project Description:
Convert the eastbound shared through/right-turn lane to a dedicated right-turn lane. Restripe the eastbound and westbound approaches to transition the bike lane from the curbside to the left side of the right-turn lane.

Notes:
Because the intersection is within State jurisdiction, project would require Caltrans approval and resources to implement. Cal Poly would need to approve/implement proposed changes to the east leg of Highland Dr. See conceptual designs on following page.

Implementation Strategy:
Can be implemented as City Capital Improvement Project, pending approval from Caltrans and Cal Poly.

Addresses Needs Assessment Issue #:
#6

Estimated Cost:
$47,000

Priority:
#10 (Low Priority)
RE-STRIPED WESTBOUND APPROACH TO PROVIDE WIDTH FOR BIKE LANE SLOT ON LEFT SIDE OF RIGHT-TURN LANE. PROVIDE GREEN PAVEMENT TO INCREASE VISIBILITY OF BICYCLISTS THROUGH CONFLICT AREA

EXTEND WESTBOUND LANE EDGE LINE TO CROSSWALK IN ORDER TO BETTER DEFINE BORDER OF VEHICULAR TRAVEL LANE AND SHOULDER FOR BICYCLISTS

RELOCATE BIKE LOOP DETECTOR

CONVERT SHARED THROUGH/RIGHT-TURN LANE TO A DEDICATED RIGHT-TURN LANE

NOTE: HIGHWAY 1/HIGHLAND DRIVE INTERSECTION IS UNDER STATE JURISDICTION. PROPOSED IMPROVEMENTS WOULD REQUIRE CALTRANS APPROVAL. IN ADDITION, MODIFICATIONS TO HIGHLAND DRIVE EAST OF HWY 1 WOULD REQUIRE CAL POLY PARTICIPATION

INSTALL BIKE LOOP

SCALE: 1" = 40'

CONCEPT FOR HIGHLAND & HIGHWAY 1 BICYCLE IMPROVEMENTS

SAFE ROUTES TO SCHOOL IMPROVEMENTS FOR BISHOP'S PEAK & PACHECO ELEMENTARY SCHOOLS
Transportation Improvement Project #9

Cerro Romauldo Ave. & Tassajara Dr. Intersection Improvements

Addresses Needs Assessment Issue #:
#7, 13, 16

Estimated Cost:
$20,000-$50,000

Priority:
N/A - To be implemented as part of other program.

Access/Safety Issue Identified by Community:
Sight distance limitations and speeding vehicles along Tassajara Dr. make it difficult to safely navigate the Cerro Romauldo Ave./Tassajara Dr. intersection from the side-street (Cerro Romauldo) approaches—particularly for bicycles and pedestrians.

Recommended Project Description:
Sight distance studies were conducted and red curb parking restrictions were implemented in 2015 to improve sight lines from side-street approaches. Consider installation of a neighborhood traffic circle as part of the planned Cerro Romauldo Bicycle Boulevard Project.

Notes:
N/A

Implementation Strategy:
Refine improvements and consider implementation as part of planned Cerro Romauldo Bicycle Boulevard Project (ETA TBD).
Transportation Improvement Project #10

Highland Dr. & Cuesta Dr. Intersection Improvements

Access/Safety Issue Identified by Community:
The offset configuration of the Highland Dr./Cuesta intersection creates confusion for drivers and sight lines are obstructed when vehicles park too close to the intersection.

Recommended Project Description:
Modify intersection striping and install additional red curb parking restrictions to improve sight lines at intersection approaches. In long-term, reconstruct southwest corner of intersection to reduce large corner radius.

Notes:
See conceptual designs on following page.

Implementation Strategy:
Can be implemented as City Capital Improvement Project.
SAFE ROUTES TO SCHOOL IMPROVEMENTS FOR BISHOP'S PEAK & PACHECO ELEMENTARY SCHOOLS

CONCEPT FOR HIGHLAND & CUESTA INTERSECTION IMPROVEMENTS

EXISTING RED CURB

SIGHT TRIANGLE FOR 25 MPH STOPPING SIGHT DISTANCE

RELOCATE STOP BAR FOR EASTBOUND INTERSECTION APPROACH

FROM HERE TO HERE

FOR SHORT-TERM, INSTALL EDGE STRIPING AND TEMPORARY RAISED ISLAND TO SHORTEN CROSSING DISTANCE AND DECREASE TURNING RADIUS AND RESTRICT PARKING ALONG CURVE. FOR LONG-TERM, CONSTRUCT CURB EXTENSION.

APPLY RED CURB PAINT TO RESTRICT PARKING WITHIN SIGHT DISTANCE TRIANGLE

EXISTING RED CURB SIGHT TRIANGLE FOR 25 MPH STOPPING SIGHT DISTANCE

FROM HERE TO HERE

FOR SHORT-TERM, INSTALL EDGE STRIPING AND TEMPORARY RAISED ISLAND TO SHORTEN CROSSING DISTANCE AND DECREASE TURNING RADIUS AND RESTRICT PARKING ALONG CURVE. FOR LONG-TERM, CONSTRUCT CURB EXTENSION.

APPLY RED CURB PAINT TO RESTRICT PARKING WITHIN SIGHT DISTANCE TRIANGLE

EXISTING RED CURB SIGHT TRIANGLE FOR 25 MPH STOPPING SIGHT DISTANCE

FROM HERE TO HERE

FOR SHORT-TERM, INSTALL EDGE STRIPING AND TEMPORARY RAISED ISLAND TO SHORTEN CROSSING DISTANCE AND DECREASE TURNING RADIUS AND RESTRICT PARKING ALONG CURVE. FOR LONG-TERM, CONSTRUCT CURB EXTENSION.

APPLY RED CURB PAINT TO RESTRICT PARKING WITHIN SIGHT DISTANCE TRIANGLE

EXISTING RED CURB SIGHT TRIANGLE FOR 25 MPH STOPPING SIGHT DISTANCE

FROM HERE TO HERE

FOR SHORT-TERM, INSTALL EDGE STRIPING AND TEMPORARY RAISED ISLAND TO SHORTEN CROSSING DISTANCE AND DECREASE TURNING RADIUS AND RESTRICT PARKING ALONG CURVE. FOR LONG-TERM, CONSTRUCT CURB EXTENSION.

APPLY RED CURB PAINT TO RESTRICT PARKING WITHIN SIGHT DISTANCE TRIANGLE

EXISTING RED CURB SIGHT TRIANGLE FOR 25 MPH STOPPING SIGHT DISTANCE

FROM HERE TO HERE

FOR SHORT-TERM, INSTALL EDGE STRIPING AND TEMPORARY RAISED ISLAND TO SHORTEN CROSSING DISTANCE AND DECREASE TURNING RADIUS AND RESTRICT PARKING ALONG CURVE. FOR LONG-TERM, CONSTRUCT CURB EXTENSION.

APPLY RED CURB PAINT TO RESTRICT PARKING WITHIN SIGHT DISTANCE TRIANGLE

EXISTING RED CURB SIGHT TRIANGLE FOR 25 MPH STOPPING SIGHT DISTANCE

FROM HERE TO HERE

FOR SHORT-TERM, INSTALL EDGE STRIPING AND TEMPORARY RAISED ISLAND TO SHORTEN CROSSING DISTANCE AND DECREASE TURNING RADIUS AND RESTRICT PARKING ALONG CURVE. FOR LONG-TERM, CONSTRUCT CURB EXTENSION.

APPLY RED CURB PAINT TO RESTRICT PARKING WITHIN SIGHT DISTANCE TRIANGLE

EXISTING RED CURB SIGHT TRIANGLE FOR 25 MPH STOPPING SIGHT DISTANCE

FROM HERE TO HERE

FOR SHORT-TERM, INSTALL EDGE STRIPING AND TEMPORARY RAISED ISLAND TO SHORTEN CROSSING DISTANCE AND DECREASE TURNING RADIUS AND RESTRICT PARKING ALONG CURVE. FOR LONG-TERM, CONSTRUCT CURB EXTENSION.

APPLY RED CURB PAINT TO RESTRICT PARKING WITHIN SIGHT DISTANCE TRIANGLE

EXISTING RED CURB SIGHT TRIANGLE FOR 25 MPH STOPPING SIGHT DISTANCE

FROM HERE TO HERE

FOR SHORT-TERM, INSTALL EDGE STRIPING AND TEMPORARY RAISED ISLAND TO SHORTEN CROSSING DISTANCE AND DECREASE TURNING RADIUS AND RESTRICT PARKING ALONG CURVE. FOR LONG-TERM, CONSTRUCT CURB EXTENSION.

APPLY RED CURB PAINT TO RESTRICT PARKING WITHIN SIGHT DISTANCE TRIANGLE

EXISTING RED CURB SIGHT TRIANGLE FOR 25 MPH STOPPING SIGHT DISTANCE

FROM HERE TO HERE

FOR SHORT-TERM, INSTALL EDGE STRIPING AND TEMPORARY RAISED ISLAND TO SHORTEN CROSSING DISTANCE AND DECREASE TURNING RADIUS AND RESTRICT PARKING ALONG CURVE. FOR LONG-TERM, CONSTRUCT CURB EXTENSION.
Transportation Improvement Project #11

South Tassajara Dr. Sidewalk Improvements

Addresses Needs Assessment Issue #:
#10

Estimated Cost:
$54,000

Priority:
#11 (Low Priority)

Access/Safety Issue Identified by Community:
Gaps in the sidewalk network along South Tassajara Dr. south of Ramona Dr. limit pedestrian access and connectivity.

Recommended Project Description:
Work with property owners to construct sidewalks per City Standards on the west side of South Tassajara Dr. between Ramona Dr. and Luneta Dr.

Notes:
Project implementation may require easement between City and private property owners to provide sufficient right-of-way for sidewalk construction.

Implementation Strategy:
Can be implemented as City Capital Improvement Project, although limited funding will be available. Project could be implemented in more timely manner through a collaborative effort between property owners, or as a potential public-private partnership through the City’s Neighborhood Matching Grant Program.
Transportation Improvement Project #12

Craig Way Sidewalk Improvements

Access/Safety Issue Identified by Community:
Gaps in the sidewalk network along Craig Way between Jeffrey Dr. and Patricia Dr. limit pedestrian access and connectivity.

Recommended Project Description:
Work with property owners to construct sidewalks per City Standards on the north or south side Craig Way between Jeffrey Dr. and Patricia Dr.

Notes:
Project implementation may require easement between City and private property owners to provide sufficient right-of-way for sidewalk construction.

Implementation Strategy:
Can be implemented as City Capital Improvement Project, although limited funding will be available. Project could be implemented in more timely manner through a collaborative effort between property owners, or as a potential public-private partnership through the City’s Neighborhood Matching Grant Program.
Transportation Improvement Project #13

Patricia Dr. & Craig Way Bicycle Facilities

Access/Safety Issue Identified by Community:
Although Patricia Dr. is designated as a Class III Bike Route between Foothill and Highland in the City’s Bicycle Transportation Plan, there are currently no signs or pavement markings identifying this street as a bicycle route. The community has expressed interest in enhanced bicycle facilities/treatments along Patricia Dr. and along Craig Way to better define these streets as a shared route for bicyclists accessing Bishop’s Peak Elementary.

Recommended Project Description:
Install shared lane markings ("sharrows") and “Bike May Use Full Lane” signage along Patricia Dr. between Foothill and Highland, and along Craig Way between Patricia Dr. and the Bishop’s Peak Elementary entrance.

Notes:
N/A

Implementation Strategy:
Can be implemented as an individual City Capital Improvement Project, or can be included part of the City’s regular Pavement Management Program (ETA for Pavement Zone #7 ~ 2021/22).

Addresses Needs Assessment Issue #:
#18

Estimated Cost:
$5,000

Priority:
#10 (Medium Priority)
Transportation Improvement Project #14

Highland Dr. & Jeffrey Dr. Curb Ramps

Access/Safety Issue Identified by Community:
Intersection is in close proximity to Bishop’s Peak Elementary and lacks accessible curb ramps.

Recommended Project Description:
Construct ADA curb ramps.

Notes:
N/A

Implementation Strategy:
Can be implemented as part of City Community Development Block Grant (CDBG) Program for curb ramp improvements.

Address Needs Assessment Issue #:
#19

Estimated Cost:
$52,000

Priority:
N/A - To be implemented as part of other program.
Transportation Improvement Project #15

La Entrada Ave. & Del Norte Way & Ramona Dr. Curb Ramps

Addresses Needs Assessment Issue #:
#21, 22

Estimated Cost:
$98,000

Priority:
To be implemented as part of other program.

Access/Safety Issue Identified by Community:
Intersection is in close proximity to Bishop’s Peak Elementary and lacks accessible curb ramps.

Recommended Project Description:
Construct ADA curb ramps.

Notes:
N/A

Implementation Strategy:
Can be implemented as part of City Community Development Block Grant (CDBG) Program for curb ramp improvements.
Transportation Improvement Project #16

Ramona/La Entrada Traffic Calming

Addresses Needs Assessment Issue #:

#23

Estimated Cost:

N/A

Priority:

N/A - To be implemented as part of other program.

Access/Safety Issue Identified by Community:
Traffic volumes and speeds along Ramona Dr. and La Entrada Ave. create an uncomfortable bicycling environment for families with young children. Traffic calming is desired along this street.

Recommended Project Description:
Pursue speed reduction measures, which may include neighborhood traffic circles, vertical deflection (speed humps/tables), bulbouts, or other traffic calming features.

Notes:
Speed surveys conducted in 2014 and 2016 indicate that the prevailing speeds along Ramona Dr. and La Entrada Ave. ranged between 28 and 30 mph, exceeding the posted speed limits (25 mph). The La Entrada/Ramona Neighborhood is currently in the official queue for development of a Traffic Improvement Plan as part of the City’s Neighborhood Traffic Management Program. NTM planning efforts are anticipated to begin in 2019/20.

Implementation Strategy:
Refine improvement recommendations and implement as part of planned La Entrada/Ramona Neighborhood Traffic Management Project (ETA ~ 2019/20).
Transportation Improvement Project #17

Highland Dr. Striping Improvements

Addresses Needs Assessment Issue #:
#26

Estimated Cost:
N/A

Priority:
N/A

Access/Safety Issue Identified by Community:
Residents have expressed concerns regarding drivers failing to stay within proper travel lanes along Highland Dr.

Recommended Project Description:
Recommend adding a centerline stripe to Highland Dr. between Patricia Dr. and Chorro St. to encourage drivers to stay in the proper lanes and slow traffic.

Notes:
Centerline striping, shared lane markings ("sharrows") and "Bicycles May Use Full Lane" signage added to Highland Dr. between Patricia and Chorro as part of City’s 2016 Roadway Resurfacing Project.

Implementation Strategy:
Project Completed Summer of 2016.
Transportation Improvement Project #18

Patricia Dr. & Fel Mar Dr. Curb Ramps

Access/Safety Issue Identified by Community:
Intersection is in close proximity to Bishop’s Peak Elementary and lacks accessible curb ramps.

Recommended Project Description:
Construct ADA curb ramps.

Notes:
N/A

Implementation Strategy:
Can be implemented as part of City Community Development Block Grant (CDBG) Program for curb ramp improvements.

Addresses Needs Assessment Issue #:
N/A

Estimated Cost:
$30,000

Priority:
N/A - To be implemented as part of other program.
Transportation Improvement Project #19

Foothill/Patricia & Foothill/Broad/Chorro Pedestrian Signal Enhancements

Addresses Needs Assessment Issue #: N/A

Estimated Cost: $135,000

Priority: #9 (Medium Priority)

Access/Safety Issue Identified by Community:
Intersections lack pedestrian signal equipment that meets current best design best practices and/or ADA guidance.

Recommended Project Description:
Install pedestrian crossing signals with countdown timers and “talking” pedestrian push buttons at the intersections of Foothill/Patricia, Foothill/Broad and Foothill/Chorro.

Notes:
N/A

Implementation Strategy:
Pursue funding through Safe Routes to School grant opportunities. Can be implemented as individual City Capital Improvement Project.
Pacheco Elementary Bike Parking

Access/Safety Issue Identified by Community:
There is a need for improved access to bike parking at the Pacheco Elementary campus. Consider potential for shared bike parking at Pacheco Elementary/Throop Park.

Recommendation:
Coordinate with SLCUSD to identify additional locations for bicycle racks at the Pacheco Elementary campus.

Notes:
N/A

Responsible Party/Agency:
Improvements to be implemented by SLCUSD.
Coordination & Enforcement Recommendation #2

Address Needs Assessment Issue #:
#12, 24

Estimated Cost:
N/A

Bishop’s Peak Elementary School Traffic

Access/Safety Issue Identified by Community:
Long queues and delays along Craig Way and Jayce Dr. approaching the main pickup/drop-off area at Bishop’s Peak Elementary School. Congestion and erratic driving behavior (i.e. double parking, U-turns where not permitted, etc.) along Highland Dr. west of Patricia Dr. near Bishop’s Peak Elementary northern entry during school drop-off/pickup times.

Recommendation:
SLCUSD is planning access improvements to the Bishop’s Peak Elementary School campus. Improvements anticipated to include modifications to Jaycee Dr. along the school frontage to improve ingress/egress during school drop-off and pickup times, as well as relocation and upgrades of bicycle racks to improve access to bicycle parking.

In addition to these efforts, coordinate with SLCUSD and Bishop’s Peak Elementary representatives to distribute informational material to parents regarding appropriate student drop-off/pickup procedures. Coordinate with SLO Police Department to schedule targeted traffic enforcement efforts along Highland Dr. and Patricia Dr. to reduce erratic driving behavior during school times.

Responsible Party/Agency:
Improvements and distribution of informational materials to be implemented by SLCUSD and Bishop’s Peak Elementary staff. Targeted enforcement efforts by SLO Police Department.
Coordination & Enforcement Recommendation #3

Addresses Needs
Assessment Issue #:
#13, 24

Estimated Cost:
N/A

Pacheco Elementary School Traffic & Parking

Access/Safety Issue Identified by Community:
Speeding and erratic traffic maneuvers along near Pacheco Elementary during school drop-off/pickup times (Ferrini, Felton, Cerro Romauldo, Cuesta). In addition, parents often park illegally in the permit parking district across from the school instead of in the designated drop-off area.

Recommendation:
Coordinate with SLCUSD and Pacheco Elementary representatives to distribute informational material to parents regarding appropriate student drop-off/pickup procedures.

Coordinate with SLO Police Department to schedule targeted traffic and parking enforcement efforts along Ferrini Rd. to reduce erratic driving behavior during school times.

Pursue traffic calming improvements within the vicinity of Pacheco Elementary as part of the planned Cerro Romauldo Bicycle Boulevard Project.

Notes:
Speed surveys conducted in the fall of 2016 on a typical school day found the prevailing speeds along Ferrini Rd., Felton Wy., Cerro Romauldo Ave. and Cuesta Dr. to be at or below the posted speed limits (25 mph).

Responsible Party/Agency:
Distribution of informational materials to be implemented by SLCUSD and Pacheco Elementary staff. Targeted enforcement efforts by SLO Police Department. City to pursue traffic calming improvements as part of future bicycle boulevard planning efforts.
Coordination & Enforcement Recommendation #4

Addresses Needs Assessment Issue #:
#16

Estimated Cost:
N/A

Pacheco Elementary School Bus Circulation

Access/Safety Issue Identified by Community:
School buses do not always comply with preferred route leaving Pacheco Elementary (via Highland Dr. to Highway 1), and instead drive through neighborhood streets such as Ferrini Rd. and Cerro Romauldo Ave.

Recommendation:
Coordinate with SLCUSD to evaluate feasibility of restricting all school bus routes from exiting Pacheco Elementary to Foothill Blvd. via neighborhood streets such as Ferrini Rd. and Cerro Romauldo Ave.

Notes:
N/A

Responsible Party/Agency:
SLCUSD to determine preferred bus routes and monitor driver compliance.
Coordination & Enforcement Recommendation #5

Bishop’s Peak Elementary Bike Parking

Access/Safety Issue Identified by Community:
There is a need for improved access to bike parking at the southern entrance (Jaycee Dr.) and northern entrance (Highland Dr.) to the Bishop’s Peak Elementary School campus. In addition, current bike rack types are not ideal.

Recommendation:
Coordinate with SLCUSD to identify potential bicycle parking access and equipment improvements at the Bishop’s Peak Elementary campus. Pursue these improvements as part of the planned campus access & facilities modifications.

Notes:
N/A

Responsible Party/Agency:
Improvements to be implemented by SLCUSD.
Coordination & Enforcement Recommendation #6

Addresses Needs
Assessment Issue #:
#1-4, others

Estimated Cost:
N/A

School District Wellness Policy

Access/Safety Issue Identified by Community:
There is a need to include the promotion of bicycling and walking to school in the school district's wellness policy. Such an addition will make grant applications more competitive for Safe Route to School funding offered by the San Luis Obispo Council of Governments (SLOCOG).

Recommendation:
Coordinate with SLCUSD to identify policy language that will satisfy SLOCOG’s criteria for Safe Routes to School funding.

Notes:
N/A

Responsible Party/Agency:
Improvements to be implemented by SLCUSD.
B – Traffic Data and Analysis
Appendix B: Traffic Data and Analysis

I. Traffic Data

Several types of traffic data are utilized to (a) investigate transportation issues identified in the SRTS Needs Assessment, and (b) evaluate the feasibility and effectiveness of potential improvement options to address these issues. Data utilized in this study includes traffic volume data, speed survey data, collision records, sight distance evaluations and in-person field observations.

Volume Data

The City of San Luis Obispo conducts regular traffic counts at major intersections, roadway segments and bicycle/pedestrian trails as part of the City’s biennial traffic monitoring program. Traffic counts capture autos, pedestrians and bicycles and include 48-hour Average Daily Traffic (ADT) counts on roadway segments and trails, and peak period (AM, Midday and PM) turning movement counts at intersections. Traffic data is normally collected during typical weekdays, avoiding school holidays, construction impacts, inclement weather or other unusual events.

The most recent traffic volume data set collected by the City is from 2016 and is available on the City’s website here:

http://slocity.maps.arcgis.com/apps/OnePane/basicviewer/index.html?appid=f808ee341ad743259b9f7b455cd7b69b

Speed Data

City Transportation Staff collects traffic speed data regularly for the purposes of setting speed limits, investigating neighborhood traffic concerns and for studying traffic safety issues at various locations throughout the City. A typical speed survey involves the use of Lidar or Radar equipment to measure vehicle speeds along a selected corridor. Speeds are recorded for vehicles in free-flow conditions (avoiding congested locations or platoons of vehicles grouped tougher) and a sample of at least 100 vehicles is recorded in each survey. Speed data is most often used to determine the prevailing (85th percentile) speeds for a given street. As part of the SRTS Needs Assessment phase, speed data was collected and reviewed to investigate concerns expressed by parents and neighbors regarding potential locations near Bishop’s Peak and Pacheco Elementary Schools where high vehicle speeds created uncomfortable conditions for pedestrians and bicyclists traveling to school.

Collision History

As part of the City’s Traffic Safety Program, collision reports are collected from the San Luis Obispo Police Department and analyzed on an annual basis to identify collision trends throughout the City. The City’s Annual Traffic Safety Report documents citywide trends by collision type (total collisions, fatal/injury collisions, pedestrian & bicycle collisions) and identifies mitigation strategies for high-collision rate locations, with a focus on locations with high rates of collisions involving pedestrians, bicyclists and injuries. Potential mitigation recommendations may include physical improvements, as well as targeted education and enforcement strategies.
As part of the SRTS Needs Assessment, collision data from the previous 10 years was reviewed for intersections and streets within typical walking or biking distance from Bishop’s Peak and Pacheco Elementary Schools (0.25-0.5 miles). This assessment included a focused investigation of locations with a documented history of pedestrian or bicycle collisions to identify potential trends that could be addressed through SRTS improvement strategies.

Sight Distance Studies

City Transportation Staff conducts studies regularly to evaluate sight distance issues at driveways, intersections and roadway crossings. Sight distance is the length of roadway visible to a user. At a minimum, the City endeavors to provide adequate stopping sight distance at roadway access points, intersections and crossings to ensure that road users have sufficient time to view a potential obstacle in the roadway, such as a stopped vehicle, debris or pedestrian crossing, and come to a stop before colliding with this object. As part of the SRTS Needs Assessment, staff conducted sight distance evaluations at locations where potential traffic safety concerns were identified to validate concerns and investigate potential improvement strategies.

Site Investigations & Observations

In addition to collecting and evaluating quantitative traffic data as part of the SRTS Needs Assessment phase, City Transportation Staff also conducted in-person field visits to observe existing conditions and better understand potential constraints to walking and biking to school. Staff walked the SRTS study area extensively to observe activity during school drop-off and pick-up times, and joined a group of parents and students for a bicycle tour following their usual route to/from school.

II. Technical Analysis

This section summarizes the technical analysis conducted for several of the recommended SRTS Transportation Improvement Projects where improvement recommendations involved significant modifications to roadway or intersection configurations, installation of new traffic control devices, or modifications to existing traffic signal operations. No technical analysis was conducted for projects such as curb ramp installations, minor striping improvements or traffic calming treatments that have minor or negligible effects on traffic operations.

Where appropriate, traffic operations are analyzed for roadway segments or intersections to evaluate potential effects of recommended improvement projects. Depending on the type of improvements considered, auto and bicycle levels of service\(^1\) were analyzed to assess operations with and without proposed project improvements compared to the City’s standards. The City has adopted multimodal level of service standards, which establish target objectives and level of service minimums for auto, bicycle, pedestrian and transit modes. For autos, the City sets a level of service objective of LOS C, with

\(^1\) Level of Service (LOS) is a standard qualitative measure used to describe conditions for transportation modes. For auto modes, level of service reflects typical speed, travel time, delays and driver convenience. For other modes, level of service may reflect the quality and comfort of the travel experience. LOS is defined using letter grades “A” through “F”, with LOS A representing free-flow conditions, and LOS F representing heavy congestion with traffic demands exceeding capacity for auto modes.
Safe Routes to School Improvements for Bishop’s Peak & Pacheco Elementary Schools

a minimum standard of LOS D outside of the Downtown. For bicycle and pedestrian modes, the City sets a level of service objective of LOS B, with a minimum standard of LOS D.

In addition to level of service, vehicle queueing is analyzed for locations where proposed improvements have potential to affect queues at intersections. Vehicle queueing has potential to negatively impact traffic operations and safety if queues spill back from turn pockets into adjacent through lanes and/or where through lane queues extend to the point where upstream intersections or major driveways are blocked. Queueing is typically analyzed in terms of 95th percentile queues\(^2\), which provide a conservative assessment of peak queues for transportation planning purposes.

Foothill Boulevard & Ferrini Road Crossing (Improvement Project #1)

Access/Safety Issue Identified: High vehicles speeds/volumes and lack of marked crossing and traffic control create a barrier for pedestrians and bicyclists attempting to cross Foothill Boulevard at the unsignalized intersection with Ferrini Road. Crossing enhancements are needed to improve safety and connectivity between the schools and neighborhoods south of Foothill.

Recommended Project: Install an enhanced bicycle/pedestrian crossing at the Foothill/Ferrini intersection, including a Pedestrian Hybrid Beacon (a.k.a. “HAWK”) and high-visibility crossing markings and signage.

Analysis Required: Review existing traffic data, conduct traffic control device warrant analysis, and review relevant design guidance and current best practices for recommended treatments at uncontrolled crossings. Analyze potential impacts to traffic operations associated with recommended crossing treatment.

Data Review

Existing traffic data was reviewed for the Foothill/Ferrini intersection to better understand existing traffic conditions and crossing demand for bicycles and pedestrians. Within the vicinity of Ferrini, Foothill Boulevard is a 30-40 mph residential arterial that carries 13,000-17,000 vehicles per day. There are four travel lanes, bike lanes, sidewalks and limited on-street parking along the north side of the street. The overall curb-to-curb width is 62 feet and the Ferrini approach is stop-controlled. In the most recent 10-year period, six (6) collisions have been recorded at the Ferrini/Foothill intersection. Of the six collisions, half were broadside collisions, two were rear-end collisions, and one involved a bicyclist riding illegally on the north sidewalk and losing control.

Existing peak hour traffic volumes, pedestrian and bicycle crossing volumes at the Foothill/Ferrini intersection are summarized below:

\(^2\) The 95th-percentile queue is defined to be the queue length (measured in vehicles or feet) that has only a five-percent probability of being exceeded during the analysis time period. It is a common parameter in traffic engineering for determining the appropriate length of turn pockets, but it is not typical of what an average driver would experience regularly.
As shown in the table above, there are currently about eight (8) pedestrians and bicyclists crossing Foothill Boulevard at Ferrini Road during the morning peak commute period, despite the high vehicle volumes/speeds and lack of a control device or crosswalk markings. The crossing activity is generally consistent throughout the morning through the early afternoon school pickup periods. With the potential addition of an enhanced crossing at Foothill/Ferrini, it is reasonable to anticipate that additional pedestrians/bicyclists who currently cross Foothill at Broad or Tassajara would shift to a Ferrini crossing to more conveniently access Pacheco Elementary School. If a nominal portion (20-25%) of these users shifted to cross at Foothill/Ferrini, the projected crossing demand would increase to over 20 crossings per hour, as shown in the table above. This demand could be expected to increase further with the potential construction of a Class I pedestrian/bicycle path through the LDS Church, as identified in the recommended SRTS Transportation Improvement Project #3.

For the purposes of this analysis, both the existing crossing volumes, and the projected increased crossing demand with addition of an enhanced crossing treatment/device are considered at Foothill/Ferrini.

Crossing Treatment Selection

California MUTCD Guidance

To evaluate the appropriate type of treatment recommended for the proposed pedestrian/bicycle crossing at the Foothill/Ferrini intersection, traffic control device warrants from the 2014 California Manual on Traffic Control Devices (CA MUTCD) were reviewed. A warrant is a condition that an intersection must meet to justify installation of a traffic control device, such as all-way stop-control, a traffic signal or Pedestrian Hybrid Beacon. Warrants typically consider multiple characteristics of an intersection, such as traffic volumes, collision history, pedestrian/bicycle crossing demand. The satisfaction of a warrant or warrants shall not itself require the installation of a traffic signal, but provides guidance to be considered as part of a comprehensive engineering study.

Warrants for potential traffic signal and pedestrian hybrid beacon installation were reviewed for the Foothill/Ferrini intersection. Warrants for all-way stop-control were not considered in this analysis, as this was assumed to be an inappropriate traffic control option for the Foothill/Ferrini intersection based on existing traffic volumes and speeds. Further, installation of a marked crosswalk without further enhancements at the Foothill/Ferrini intersection would not be recommended based on City of San Luis Obispo Crosswalk Policy.
MUTCD - Traffic Signal Warrants
The CA MUTCD Section 4C contains nine (9) warrants for consideration when determining whether installation of a traffic signal is justified at a particular location. The results of a traffic signal warrant analysis for the Foothill/Ferrini intersection are summarized below:

- WARRANT 1 (Eight-Hour Vehicular Volume) NOT MET
- WARRANT 2 (Four-Hour Vehicular Volume) NOT MET
- WARRANT 3 (Peak-Hour Delay/Volumes) NOT MET
- WARRANT 4 (Pedestrian Volume) NOT MET
- WARRANT 5 (School Crossing) NOT MET
- WARRANT 6 (Coordinated Signal System) NOT MET
- WARRANT 7 (Crash Experience) NOT MET
- WARRANT 8 (Roadway Network) NOT MET
- WARRANT 9 (Grade Crossing) NOT MET

As shown above, traffic signal warrants are not satisfied for the Foothill/Ferrini intersection, even when considering additional projected pedestrian/bicycle crossing demand with the addition of a controlled crossing.

MUTCD - Pedestrian Hybrid Beacon Guidance
The CA MUTCD Section 4F contains guidance regarding potential installation of a pedestrian hybrid beacon, often referred to as a “HAWK device”. Installation of a pedestrian hybrid beacon may be considered to facilitate pedestrian or bicycle crossings at a location where a traffic signal is not justified, but insufficient gaps in traffic or high vehicle speeds on the major street do not permit pedestrians to cross the street safely and efficiently.

As shown below, the Foothill/Ferrini location was evaluated for installation of a potential pedestrian hybrid beacon using CA MUTCD guidance with existing and projected pedestrian/bicycle crossing demand.
Based on CA MUTCD guidance, consideration for installation of a pedestrian hybrid beacon is justified for the Foothill/Ferrini intersection when considering a reasonable amount shift/increase in pedestrian/bicycle crossing demand with the addition of a controlled crossing.

NCHRP Report 562 Guidance

To supplement the pedestrian crossing guidance found in the MUTCD, the Foothill/Ferrini crossing was analyzed based on guidance provided in National Cooperative Highway Research Program (NCHRP) Report 562: *Improving Pedestrian Safety at Unsignalized Crossings*. NCHRP Report 562 provides guidance to transportation planners and engineers for selecting appropriate engineering treatments to improve safety for pedestrians crossing high-volume, high-speed roadways at unsignalized intersections. These guidelines include quantitative procedures using input variables such as pedestrian volume, street crossing width, volume and speeds to recommend one of four possible crossing treatment categories:

- No Treatment
- Marked Crosswalk (standard crosswalk markings)
- Enhanced/Active (high-visibility markings/signs, passive or active beacons/flashers)
- Red Signal or Beacon Device (devices w/ circular red, such as a Pedestrian Hybrid Beacon)
- Conventional Traffic Signal

For locations where no treatment is recommended, NCHRP Report 562 identifies other measures that can be implemented to improve pedestrian safety, such as addition of a median refuge, curb extensions or other roadway narrowing, lighting improvements and traffic calming.

The Foothill/Ferrini intersection was assessed using the guidance of NCHRP Report 562. Consistent with the recommendation per CA MUTCD guidance, considering the additional pedestrian/bicycle

Foothill & Ferrini Pedestrian Hybrid Beacon Evaluation

![Graph showing pedestrian crossing data](Source: CA MUTCD Figure 4F-2)
crossing demand projected with the addition of an enhanced crossing at Ferrini and the proposed Class I pedestrian/bicycle path through the LDS Church property, the installation of a Red Signal Device, such as a Pedestrian Hybrid Beacon (aka HAWK) is recommended.

Considering only existing pedestrian/bicycle crossing volumes at Foothill/Ferrini, the recommended crossing improvements would include the addition of safety measures such as narrowing the roadway width, installation of a pedestrian median refuge and traffic calming measures along Foothill Boulevard.

Traffic Operations Analysis

In order to assess potential vehicular traffic impacts associated with the addition of an enhanced crossing with a pedestrian hybrid beacon device at the Foothill/Ferrini intersection, average roadway segment levels of service and queues were calculated along Foothill Boulevard at this location. Potential level of service impacts for Foothill Boulevard would be considered significant if this roadway segment were to degrade below the City’s adopted performance target of LOS D. Queueing impacts would be considered significant if the addition of a pedestrian hybrid beacon were to cause vehicular queues to spill back to the nearest upstream intersection when the device is activated.

Traffic impacts were analyzed for weekday AM and PM peak hour conditions using Synchro/SimTraffic v9 traffic analysis software. Because current analysis software does not have the capabilities to specifically analyze operations with a pedestrian hybrid beacon, the Foothill/Ferrini intersection was modeled as a pedestrian signal. This approach is conservative, as this analysis does not fully reflect the traffic capacity benefits of a hybrid beacon over a signal – with the flashing red interval during a crossing phase, main street vehicles stop and pass through the intersection when clear, instead of remaining stopped during the full pedestrian clearance phase (as with a traffic signal). This analysis was performed using existing auto traffic volumes with projected increased pedestrian/bicycle crossing volume estimates. Results are summarized below:

<table>
<thead>
<tr>
<th>Foothill Boulevard (Patricia to Chorro) Roadway Segment Travel Times and Levels of Service</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scenario</td>
</tr>
<tr>
<td>Existing Conditions</td>
</tr>
<tr>
<td>Existing</td>
</tr>
<tr>
<td>Existing + Pedestrian Hybrid Beacon</td>
</tr>
<tr>
<td>Existing</td>
</tr>
</tbody>
</table>

Notes:

a) Roadway segment travel times and average speeds calculated using SimTraffic analysis software and 2016 traffic data.

b) Segment levels of service determined based on HCM 2010 Urban Street LOS criteria, which is based on Travel Speed as a percentage of Base Free-Flow Speed (BFFS). Average travel speed includes delays at intersections along study segment.

c) Base Free-Flow Speed calculated per HCM 2010 methodology.

d) Locations that exceed the City’s established level of service target (LOS D) are highlighted.

As shown in the table above, with the addition of an enhanced crossing with a pedestrian hybrid beacon at the Foothill/Ferrini intersection, roadway segment levels of service would continue to operate at the City’s level of service standard of LOS D or better during AM and PM peak hour conditions.
Foothill Boulevard Queueing w/ Pedestrian Hybrid Beacon at Ferrini

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Peak Hour</th>
<th>EB Foothill</th>
<th></th>
<th>WB Foothill</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Max Allowed(b)</td>
<td>Queue</td>
<td>Max Allowed(b)</td>
<td>Queue</td>
</tr>
<tr>
<td>Existing Conditions</td>
<td>AM</td>
<td>880</td>
<td>42</td>
<td>600</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>PM</td>
<td>27</td>
<td>27</td>
<td>32</td>
<td>32</td>
</tr>
<tr>
<td>Existing + Pedestrian Hybrid Beacon</td>
<td>AM</td>
<td>174</td>
<td>88</td>
<td>111</td>
<td>103</td>
</tr>
<tr>
<td></td>
<td>PM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:

a) Queueing values represent 95th percentile queues measured in feet, as calculated using SimTraffic analysis software.
b) Max Allowed represents the maximum vehicle queue before reaching the nearest upstream intersection. At this point, queuing spillback from Foothill/Ferrini crossing would significantly impede corridor traffic progression.

As shown in the table above, with the addition of the proposed pedestrian hybrid beacon at Foothill/Ferrini, peak hour vehicle queues (measured as 95th percentile queues) would not be expected to spill back to the point where upstream intersections or high-volume driveways would be impacted.

Foothill & Patricia /La Entrada Crossing (Improvement Project #2)

Access/Safety Issue Identified: The offset configuration of the Foothill/Patricia/La Entrada intersection and narrow sidewalks make it difficult for bicyclists to make a safe, legal crossing of Foothill. In addition, sight distance constraints, high turning speeds and queuing from the Foothill/Patricia intersection create a difficult environment for pedestrian/bicycle crossing and for vehicle turning movements at the Foothill/La Entrada intersection.

Recommended Project: Modify the traffic signal at Foothill & Patricia to include signalization of the offset La Entrada street approach. With these improvements, Foothill/Patricia/La Entrada would function as a single signalized intersection, with dedicated signal phases for vehicles/bicycles and pedestrians crossing Foothill Boulevard from Patricia and La Entrada.

Analysis Required: Analyze potential impacts to traffic operations associated with recommended traffic signal modification.

Traffic Operations Analysis

In order to assess potential vehicular traffic impacts associated with the proposed modification of the Foothill/Patricia traffic signal to include the Foothill/La Entrada approach, peak hour intersection levels of service and vehicle queues were analyzed. Potential level of service impacts for the intersection would be considered significant if this location were to degrade below the City’s adopted performance target of LOS D. Queueing impacts would be considered significant if the vehicular queues for turn movements were to spill back beyond the available turn pocket storage lengths. Traffic impacts were analyzed for weekday AM and PM peak hour conditions using Synchro v9 traffic analysis software with traffic volumes. Results are summarized below:
Safe Routes to School Improvements for Bishop’s Peak & Pacheco Elementary Schools

Appendix B: Traffic Data & Analysis

Foothill/Patricia/La Entrada Intersection Levels of Service

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Intersection</th>
<th>Traffic Control</th>
<th>AM Peak Hour</th>
<th>PM Peak Hour</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Delay</td>
<td>LOS</td>
</tr>
<tr>
<td>Existing Conditions</td>
<td>Foothill/Patricia</td>
<td>Signal</td>
<td>18.5</td>
<td>B</td>
</tr>
<tr>
<td></td>
<td>Foothill/La Entrada</td>
<td>SSSC</td>
<td>19.4</td>
<td>C</td>
</tr>
<tr>
<td>Existing + Signal Modification</td>
<td>Foothill/Patricia</td>
<td>Signal</td>
<td>29.9</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td>Foothill/La Entrada</td>
<td>Signal</td>
<td>9.5</td>
<td>A</td>
</tr>
</tbody>
</table>

Notes:

a) Intersection levels of service calculated based on Synchro 9 methodology, as HCM 2010 methodology does not support clustered intersections.
b) Signal - Signalized Control; SSSC - Side-street Stop-Control
c) For signalized intersection, LOS reported for intersection average. For SSSC intersection, LOS reported for worst-case approach.

As shown in the table above, with the proposed signal modification, the intersections of Foothill/Patricia and Foothill/La Entrada would continue to operate at acceptable LOS C or better for AM and PM peak hour conditions.

Foothill/Patricia/La Entrada Intersection Queueing

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Intersection</th>
<th>Peak Hour</th>
<th>NBL/R Storage Queue</th>
<th>SBL/R Storage Queue</th>
<th>EBL Storage Queue</th>
<th>EBT Storage Queue</th>
<th>WBL Storage Queue</th>
<th>WBT Storage Queue</th>
<th>WBR Storage Queue</th>
</tr>
</thead>
<tbody>
<tr>
<td>Existing Conditions</td>
<td>Foothill/Patricia</td>
<td>AM</td>
<td>101 60</td>
<td>100 29</td>
<td>-</td>
<td>#412 157</td>
<td>25 <25</td>
<td>75 261</td>
<td><25</td>
</tr>
<tr>
<td></td>
<td>Foothill/La Entrada</td>
<td>PM</td>
<td><25</td>
<td><25</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Existing + Signal Modification</td>
<td>Foothill/Patricia</td>
<td>AM</td>
<td>200 128</td>
<td>100 48</td>
<td>-</td>
<td>#668 273</td>
<td>25 <25</td>
<td>75 <25</td>
<td>70 <25</td>
</tr>
<tr>
<td></td>
<td>Foothill/La Entrada</td>
<td>PM</td>
<td>38</td>
<td>35</td>
<td>75 <25</td>
<td>100 36</td>
<td>-</td>
<td>#604</td>
<td></td>
</tr>
</tbody>
</table>

Notes:

a) Queueing values represent 95th percentile queues, as calculated using Synchro 9 analysis software.
b) Where turn pockets exist, storage lengths are measured in feet.
c) Locations are highlighted where projected queues are estimated to extend at least one vehicle length (25') beyond the provided turn pocket storage or upstream intersection.
d) # indicates locations where the volume exceeds capacity, actual queues may be longer.

As shown in the highlighted portion of the table above, peak (95th percentile) queues in the westbound direction at Foothill/Patricia can currently back up past La Entrada in the AM peak hour, impeding turning movements from La Entrada to Foothill. By signalizing the Foothill/La Entrada intersection and coordinating traffic progression between the two closely-spaced intersections, the westbound queueing issue between the intersections is eliminated. However, peak queues for through movement on Foothill Boulevard would be expected to increase at the Foothill/Patricia/La Entrada intersection approaches due to the need to increase the traffic signal cycle length as part of the proposed signal modifications.

Overall, implementation of the proposed signal modifications at Foothill/Patricia/La Entrada is not anticipated to result in a significant impact to traffic operations.
Foothill Boulevard Bicycle Improvements (Improvement Project #4)

Access/Safety Issue Identified: Although Foothill Boulevard is one of the most heavily used bicycle corridors in the City, high traffic volumes/speeds create an uncomfortable walking and bicycling environment for less-experienced cyclists. Less experienced riders and parents with school-age children can feel uncomfortable riding in bike lanes adjacent to high-speed traffic, and often ride illegally in the sidewalk instead.

Recommended Project: Investigate the feasibility of bicycle facility improvements along the Foothill Boulevard corridor from Patricia Dr. to Santa Rosa (Highway 1). Potential types of improvements to be considered include buffered bike lanes, protected bikeways ("cycle tracks"), and intersection crossing improvements such as green markings through conflict areas, bike boxes and bicycle signals.

Analysis Required: Review existing traffic data and street cross section elements. Analyze planning-level auto and bicycle levels of service for the Foothill Boulevard corridor for existing conditions and with potential enhanced bicycle facilities. Conduct more detailed analysis of potential improvements as part of planned update to the City’s Bicycle Transportation Plan and/or as future stand-alone project.

Data Review
Existing traffic data and roadway characteristics were reviewed for the Foothill Boulevard corridor between Patricia and Santa Rosa (Highway 1) to better understand existing traffic operations and conditions for bicyclists. Foothill Boulevard is classified as a Residential Arterial with a posted speed limit of 40 mph between Patricia and Ferrini, and 30 mph east of Ferrini. Foothill carries an average daily traffic volume of approximately 12,000-13,000 between Patricia and Ferrini and approximately 17,000-20,000 between Ferrini and Santa Rosa. There are 5-6-foot bike lanes on both sides of the street and on-street parking on both sides of the street between Patricia and Tassajara and on the north side only between Tassajara and Broad. The curb-to-curb width of Foothill Boulevard is 64 feet and the vehicle travel lane configurations along the corridor are as follows:

- Patricia to Tassajara
 - 1 EB travel lane
 - 1 WB travel lane
 - 1 center turn lane

- Tassajara to 500’ West of Ferrini
 - 2 EB travel lanes
 - 1 WB travel lane
 - 1 center turn lane

- 500’ West of Ferrini to 400’ East of Ferrini
 - 2 EB travel lanes
 - 2 WB travel lane

- 400’ East of Ferrini to Santa Rosa (Highway 1)
 - 2 EB travel lanes
 - 2 WB travel lane
 - 1 center turn lane

In the most recent 10-year period, 166 collisions have been recorded along Foothill Boulevard between Patricia and Santa Rosa (excluding the Foothill/Santa Rosa intersection itself) at the Ferrini/Foothill...
Intersection. Further, segments of Foothill have been included in the ranking of top high collision-rate arterial streets in the City’s annual Traffic Safety Report each of the past three years. Of the 166 collisions reported in the previous 10-year period, 16 involved bicyclists and three (3) involved pedestrians. Existing auto, pedestrian and bicycle volumes along the Foothill corridor are summarized below:

<table>
<thead>
<tr>
<th>Roadway Segment</th>
<th>Dlr.</th>
<th>Auto Volumes AM Peak Hour</th>
<th>Auto Volumes PM Peak Hour</th>
<th>Auto Volumes Daily</th>
<th>Pedestrian Volumes AM Peak Hour</th>
<th>Pedestrian Volumes PM Peak Hour</th>
<th>Pedestrian Volumes Daily</th>
<th>Bicycle Volumes AM Peak Hour</th>
<th>Bicycle Volumes PM Peak Hour</th>
<th>Bicycle Volumes Daily</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foothill (Patricia to Tassajara)</td>
<td>EB</td>
<td>857</td>
<td>484</td>
<td>6,489</td>
<td>11</td>
<td>5</td>
<td>69</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Foothill (Tassajara to Ferrini)</td>
<td>EB</td>
<td>879</td>
<td>504</td>
<td>7,027</td>
<td>18</td>
<td>4</td>
<td>88</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Foothill (Ferrini to Broad/Chorro)</td>
<td>EB</td>
<td>906</td>
<td>574</td>
<td>8,613</td>
<td>32</td>
<td>16</td>
<td>248</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Foothill (Broad/Chorro to Santa Rosa)</td>
<td>EB</td>
<td>890</td>
<td>617</td>
<td>9,467</td>
<td>68</td>
<td>27</td>
<td>359</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Foothill (Patricia to Tassajara)</td>
<td>WB</td>
<td>375</td>
<td>678</td>
<td>5,887</td>
<td>7</td>
<td>6</td>
<td>52</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Foothill (Tassajara to Ferrini)</td>
<td>WB</td>
<td>358</td>
<td>708</td>
<td>6,295</td>
<td>2</td>
<td>6</td>
<td>64</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Foothill (Ferrini to Broad/Chorro)</td>
<td>WB</td>
<td>531</td>
<td>837</td>
<td>8,457</td>
<td>17</td>
<td>21</td>
<td>237</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Foothill (Broad/Chorro to Santa Rosa)</td>
<td>WB</td>
<td>493</td>
<td>850</td>
<td>9,480</td>
<td>5</td>
<td>36</td>
<td>347</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
a) Traffic data collected in 2016.
b) Pedestrian volumes summarized for total street segment, which includes peds traveling eastbound and westbound on either side of the street.

It should be noted that the segments of Foothill east of Ferrini, including the stretch from Santa Rosa to California, represent 4 of the 10 highest-volume bicycle street segments in the City. While bike lanes are currently provided along this stretch, they are generally limited to 5-6 feet in width—less than the standard width of eight (8) feet identified in the City Bicycle Transportation Plan for a corridor with these characteristics. Further, current best practices for bicycle facility design recommend the addition of buffers, preferably with physical separation, for bicycle facilities on corridors with auto speeds and volumes similar to Foothill Boulevard. Based on this information, it would be prudent to explore bicycle facility enhancements along this corridor.

Preliminary Analysis of Potential Corridor Modifications

In order to assess the relative benefits or impacts to traffic and bicycling conditions along the Foothill Boulevard corridor with potential bicycle facility enhancements, a preliminary level of service analysis was performed for auto and bicycle modes under one potential improvement scenario. The potential improvement scenario selected for consideration involves reconfiguring the street cross section along Foothill between Patricia and Broad Street to accommodate enhanced bicycle facilities, such as protected or buffered bike lanes.

One potential configuration for these corridor improvements, which involves eliminating the second eastbound travel lane between Tassajara and Ferrini to provide enhanced bicycle facilities, is shown on the following page.
Forms of physical separation for protected bike lanes can include flexible posts, raised curb, planters or other vertical elements.
Results of a planning-level analysis of auto and bicycle levels of service with these potential corridor modifications is summarized below:

Foothill Boulevard (Patricia to Chorro) Roadway Segment Auto Levels of Service

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Direction</th>
<th>AM Peak Hour</th>
<th>PM Peak Hour</th>
<th>LOS</th>
<th>AM Peak Hour</th>
<th>PM Peak Hour</th>
<th>LOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Existing Conditions</td>
<td>EB</td>
<td>176</td>
<td>16</td>
<td>42%</td>
<td>D</td>
<td>128</td>
<td>58%</td>
</tr>
<tr>
<td></td>
<td>WB</td>
<td>122</td>
<td>23</td>
<td>59%</td>
<td>C</td>
<td>136</td>
<td>53%</td>
</tr>
<tr>
<td>Existing + Improvements</td>
<td>EB</td>
<td>186</td>
<td>16</td>
<td>-0.9</td>
<td>40%</td>
<td>D</td>
<td>138</td>
</tr>
<tr>
<td></td>
<td>WB</td>
<td>133</td>
<td>21</td>
<td>-1.9</td>
<td>54%</td>
<td>C</td>
<td>178</td>
</tr>
</tbody>
</table>

Notes:

a) Roadway segment travel times and average speeds calculated using Synchro/SimTraffic v9 analysis software.

b) Segment levels of service determined based on HCM 2010 Urban Street LOS criteria, which is based on Travel Speed as a percentage of Base Free-Flow Speed. Average travel speed includes delays at intersections along study segment. Base Free-Flow Speed calculated per HCM 2010 methodology.

c) Locations that exceed the City's established level of service target (LOS D) are highlighted.

As shown in the table above, with the addition of the potential roadway modifications, which include elimination of the second eastbound travel lane between Tassajara and Ferrini, roadway segment auto levels of service would continue to operate at the City’s auto level of service standard of LOS D or better during AM and PM peak hour conditions.

Foothill Boulevard Roadway Segment Bicycle Levels of Service

<table>
<thead>
<tr>
<th>Segment</th>
<th>Dir.</th>
<th>Existing Conditions</th>
<th>Existing + Improvements</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>AM Peak Hour PM Peak Hour</td>
<td>AM Peak Hour PM Peak Hour</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Score LOS Score LOS</td>
<td>Score LOS Score LOS</td>
</tr>
<tr>
<td>Foothill Boulevard (Patricia to Tassajara)</td>
<td>EB</td>
<td>4.35 E 4.06 D</td>
<td><0.25 A <0.25 A</td>
</tr>
<tr>
<td></td>
<td>WB</td>
<td>3.93 D 4.23 D</td>
<td><0.25 A <0.25 A</td>
</tr>
<tr>
<td>Foothill Boulevard (Tassajara to Ferrini)</td>
<td>EB</td>
<td>3.29 C 3.01 C</td>
<td><0.25 A <0.25 A</td>
</tr>
<tr>
<td></td>
<td>WB</td>
<td>3.91 D 4.25 D</td>
<td><0.25 A <0.25 A</td>
</tr>
<tr>
<td>Foothill Boulevard (Ferrini to Broad/Chorro)</td>
<td>EB</td>
<td>2.07 B 1.84 A</td>
<td>0.63 A 0.40 A</td>
</tr>
<tr>
<td></td>
<td>WB</td>
<td>1.80 A 2.03 B</td>
<td>0.36 A 0.59 A</td>
</tr>
<tr>
<td>Foothill Boulevard (Broad/Chorro to Santa Rosa)</td>
<td>EB</td>
<td>2.06 B 1.88 A</td>
<td>0.62 A 0.44 A</td>
</tr>
<tr>
<td></td>
<td>WB</td>
<td>1.76 A 2.04 B</td>
<td>0.32 A 0.60 A</td>
</tr>
</tbody>
</table>

Notes:

a) Roadway volumes collected in January 2016 and represent the average of two typical weekdays.

b) Bicycle Levels of Service for roadway links calculated based on Highway Capacity Manual (HCM) 2010 methodology.

As shown in the table above, with the addition of the potential roadway modifications, which include addition of protected bike lanes on both sides of the Foothill Boulevard corridor, roadway segment bicycle levels of service would improve significantly compared to existing conditions, particularly along the segments between Patricia and Ferrini where bicyclists currently experience the discomfort of adjacent on-street parking activity on the right and auto traffic traveling at 40 miles per hour on the left. The City has set a bicycle level of service target objective of LOS B, with LOS D as a minimum
acceptable standard. With the modifications included in this example improvement scenario, which include addition of protected bike lanes to physically separate bicycle facilities from auto traffic, bicycle levels of service for the Foothill corridor would meet or exceed the City’s target objective.

Based on preliminary planning-level analysis, potential corridor improvements would likely to provide substantial benefits to the bicycling environment along Foothill Boulevard between Patricia and Santa Rosa (Highway 1). Additional analysis is recommended to evaluate near-term and long-term traffic operations and other constraints prior to proceeding further with development of detailed improvement recommendations.

Highland & Highway 1 (Improvement Project #8)

Access/Safety Issue Identified: The bike lane (and bike loop detector) at the eastbound approach to the Highland Drive/Highway 1 intersection is positioned so that right-turning vehicles conflict with bicycles traveling eastbound to Cal Poly. At the westbound intersection approach, the bike lane is located along the curb side, which is not the correct design for an intersection approach with a dedicated right-turn lane.

Recommended Project: Convert the eastbound shared through/right-turn lane to a dedicated right-turn lane. Restripe the eastbound and westbound approaches to transition the bike lane from the curbside to the left side of the right-turn lane.

Analysis Required: Review existing bicycle volumes and collision history. Analyze traffic operations at Highway 1/Highland intersection with and without proposed modifications.

Data Review

Existing traffic volumes and transportation characteristics were reviewed at the Highway 1/Highland intersection. This intersection serves as the primary western entrance to Cal Poly and as the northern gateway to the City. Over 800 bicyclists per day use this intersection to ingress/egress the Cal Poly campus—the vast majority of whom travel via the Highland Drive neighborhood west of Highway 1.

At the eastbound Highland Drive intersection approach, a bike lane is provided along the curb, adjacent to a shared through/right-turn lane. With the current intersection configuration, eastbound vehicles often encroach into the bike lane when making right-turns and conflict with bicyclists continuing eastbound on Highland to Cal Poly—particularly during the morning commute when traffic volumes entering Cal Poly are highest. At the westbound approach, a bike lane is provided along the curbside adjacent to a right-turn lane. This configuration is not consistent with current design practices, which recommend placement of a bike lane to the left side of right-turn lanes at intersections to reduce potential for right hook collisions. In the most recent 10-year period, 10 collisions have been recorded at the Highway 1/Highland intersection. Of the 10 collisions, one involved a bicyclist and one involved a pedestrian.

Traffic Operations Analysis

In order to assess potential vehicular traffic impacts associated with the proposed modifications to the eastbound and westbound lane configurations at Highway 1/Highland, peak hour intersection levels of service and vehicle queues were analyzed. Potential level of service impacts for the intersection would be considered significant if this location were to degrade below Caltrans’ adopted performance target of the threshold of LOS C/D. Queueing impacts would be considered significant if the vehicular queues for turn movements were to spill back beyond the available turn pocket storage lengths. Traffic impacts
were analyzed for weekday AM and PM peak hour conditions using Synchro v9 traffic analysis software with traffic volumes. Results are summarized below:

Highway 1/Highland Drive Intersection Levels of Service

<table>
<thead>
<tr>
<th>Scenario</th>
<th>AM Peak Hour</th>
<th>PM Peak Hour</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NB</td>
<td>SB</td>
</tr>
<tr>
<td>Existing Conditions</td>
<td>Delay</td>
<td>LOS</td>
</tr>
<tr>
<td>Existing + Improvements</td>
<td>38.5</td>
<td>D</td>
</tr>
</tbody>
</table>

Notes:
- Intersection LOS calculated using Synchro 9 analysis methodology, as HCM 2010 methodology does not support the existing intersection lane configuration.

As shown in the table above, with the proposed intersection modifications, the overall intersection levels of service would remain unchanged. The intersection would continue to operate at LOS D for the AM and PM peak hour periods with an increase to the average delay of about 1 second per vehicle. The eastbound intersection approach would degrade from LOS D to LOS E with an addition of approximately 10 seconds/vehicle of delay during the AM peak hour in conjunction with the modifications.

Highway 1/Highland Drive Intersection Queueing

As shown in the highlighted portion of the table above, peak (95th percentile) queues in the westbound left-turn lane will continue to extend beyond the available turn pocket storage length, but are not anticipated to increase with the addition of the proposed intersection modifications. Peak queues for the eastbound Highland Drive approach will continue to exceed the available left-turn pocket storage during the AM peak hour because through movement queues block access to the left-turn lane. Because the eastbound and westbound approaches operate with split phasing, spillback from a left-turn pocket is not a significant concern, as the left and through movements receive a green light at the same time. Peak eastbound through movement queues are anticipated to increase by approximately 210 feet (8 car lengths) during the AM peak hour period with the proposed intersection modifications. While this would likely add some frustration for drivers at this intersection during the AM commute period when observing a longer queue of vehicles at this approach, an increase to through movement vehicle queues does not necessarily trigger a significant traffic impact based on City standards. Further, a review of AM peak hour traffic operations using SimTraffic simulation software shows that even with no changes to the current signal timing plan, the vast majority of the analysis period there is sufficient green time for the full queue of vehicles at the eastbound approach to clear the intersection each cycle.
The recommended intersection modifications at the Highway 1/Highland Drive intersection would provide significant benefit for bicyclists approaching the intersection from either Highland Drive approach. Based on this preliminary traffic analysis, additional review by City and Caltrans traffic engineering staff is recommended to fully understand the potential benefits and tradeoffs associated with these improvements prior to implementation.
C – Adopting Resolution
RESOLUTION NO. 10828 (2017 SERIES)

A RESOLUTION OF THE CITY COUNCIL OF THE CITY OF SAN LUIS OBIOSO, CALIFORNIA, ADOPTING THE SAFE ROUTES TO SCHOOL PLAN FOR BISHOP’S PEAK AND PACHECO ELEMENTARY SCHOOLS, AMENDING THE 2013 BICYCLE TRANSPORTATION PLAN TO INCLUDE THE CLASS I PATH BETWEEN RAMONA DR AND FOOTHILL BLVD, AND ADOPTING AN ADDENDUM TO THE INITIAL STUDY/NEGATIVE DECLARATION FOR THE 2013 BICYCLE TRANSPORTATION PLAN

WHEREAS, the Bicycle Transportation Plan and the Land Use and Circulation Elements to the General Plan support Safe Routes to School efforts; and

WHEREAS, the City has adopted a Vision Zero policy to eliminate all fatal traffic deaths and severe injuries by 2030; and

WHEREAS, the Circulation Element to the General Plan has modal split objectives of 20 percent for bicycles and 18 percent for walking, carpool, and other forms of transportation; and

WHEREAS, the City coordinated with neighbors, parents and officials of Bishop’s Peak and Pacheco Elementary Schools on outreach and public input through community meetings and other methods; and

WHEREAS, the Class I Path between Ramona Dr and Foothill Blvd is a proposed bicycle and pedestrian facility that is not identified in the 2013 Bicycle Transportation; and

WHEREAS, on July 20, 2017 the Bicycle Advisory Committee reviewed the Safe Routes to School Plan for Bishop’s Peak and Pacheco Elementary Schools at a public hearing and recommended that the City Council approve the Plan and amend the Bicycle Transportation Plan to include the Ramona Dr and Foothill Blvd Class I Path.

NOW, THEREFORE, BE IT RESOLVED by the Council of the City of San Luis Obispo as follows:

SECTION 1. Findings. The City Council finds that, after consideration of the Safe Routes to School Plan for Bishop’s Peak and Pacheco Elementary Schools as recommended by the Bicycle Advisory Committee, staff recommendations, public testimony, and reports thereof:

a) The proposed Safe Routes to School Plan will promote bicycling and walking to Bishop’s Peak and Pacheco Elementary Schools in an effort to make these activities safer, more accessible, and attractive for children and their families.

b) The proposed Safe Routes to School Plan will further General Plan goals to increase bicycle and walking.

c) The proposed Ramona Dr. to Foothill Blvd Class I Path will provide a new bicycling and walking facility for school access and connect the neighborhoods.
SECTION 2. Approvals.

a) The Safe Routes to School Plan for Bishop’s Peak and Pacheco Elementary Schools as set forth in Exhibit A is hereby approved.

b) The 2013 Bicycle Transportation Plan is hereby amended to include the Ramona Drive to Foothill Blvd Class I Path as depicted in Exhibit B.

SECTION 3. CEQA Determination. The City Council finds that the amendments to the 2013 Bicycle Transportation Plan do not trigger any of the circumstances set forth in CEQA Guidelines Section 15162 and hereby adopt the Addendum to Initial Study/Negative Declaration ER 71-13 as set forth in Exhibit C.

Upon motion of Vice Mayor Rivoire, seconded by Council Member Christianson, and on the following roll call vote:

AYES: Council Members Christianson, Gomez, and Pease, Vice Mayor Rivoire and Mayor Harmon

NOES: None

ABSENT: None

The foregoing resolution was passed and adopted this 15th day of August, 2017.

Mayor Heidi Harmon

ATTEST:

Carrie Gallagher
City Clerk
APPROVED AS TO FORM:

Christine Dietrick
City Attorney

IN WITNESS WHEREOF, I have hereunto set my hand and affixed the official seal of the City of San Luis Obispo, California, this 28th day of August, 2017.

Carrie Gallagher
City Clerk